首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   22篇
  国内免费   24篇
安全科学   5篇
废物处理   3篇
环保管理   1篇
综合类   52篇
基础理论   19篇
污染及防治   16篇
评价与监测   1篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2017年   5篇
  2016年   7篇
  2015年   11篇
  2014年   4篇
  2013年   10篇
  2012年   7篇
  2011年   5篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
排序方式: 共有97条查询结果,搜索用时 17 毫秒
1.
Zinc oxide nanoparticles (ZnO NPs) are being widely investigated in a bioassay due to potential negative effects to biological receptor. The dissolution of metal nanoparticles such as ZnO NPs is crucial to interpret nanotoxicity results because ZnO NPs can release toxic-free ions in exposure media. In the present study, dissolution of ZnO NPs was evaluated in three selected synthetic media for aquatic toxicological testing: Elendt M4 daphnia medium, OECD algal medium, and fish embryo rearing solution. Both media are currently recommended for OECD testing for daphnia and algae. Time-dependent dissolution of ZnO NPs has been investigated in terms of sonication time to be used for the preparation of aqueous NPs suspension, and dissolution time corresponding to exposure period in toxicity testing. Since sonication is widely applied for NPs dispersion in the most of nanotoxicological testing, the emphasis of this study was on the dissolution of NPs as a function of sonication time. We also investigated the concentration-dependent dissolution of ZnO NPs. Our results demonstrated that dissolution of ZnO NPs was significantly affected by sonication and dissolution time, as well as NPs concentration. This study showed that parameters affecting dissolution of ZnO NPs should be considered in nanotoxicological testing.  相似文献   
2.
以乙酸锌、柠檬酸三钠和氢氧化钠为原料,在室温下磁力搅拌制得ZnO。经XRD、SEM和TEM表征,ZnO具有良好的结晶度,为花瓣状形貌。在模拟太阳光的照射下,光催化反应80 min,ZnO对质量浓度为25 mg/L的双酚A溶液中双酚A的去除率仅为32.0%,对质量浓度为20 mg/L的Cr(Ⅵ)溶液中Cr(Ⅵ)的去除率为60.2%。将双酚A与Cr(Ⅵ)溶液混合后,ZnO对双酚A和Cr(Ⅵ)的去除率分别提高至77.6%和94.2%。  相似文献   
3.
为了探明酸性土壤条件下纳米氧化锌(nano-ZnO)长期暴露对蕹菜的生理生态效应,通过盆栽实验,设置7个浓度系列的nano-ZnO,70 d后测定相对叶绿素含量、生长参数和叶绿素荧光参数。结果显示,随nano-ZnO浓度升高,蕹菜相对叶绿素含量和生长参数先缓慢增加后显著下降。nano-ZnO对蕹菜生物量在根部和冠部间的分配无显著影响。相对叶绿素含量与nano-ZnO浓度呈显著负相关(r=-0.879,p<0.001)。在nano-ZnO质量比为160 mg/kg时,光合有效辐射190μmol/(m2·s)诱导的激发能过剩,但过剩激发能可通过热耗散保护机制消耗,以避免发生光损伤。酸性土壤条件下,弱光诱导的蕹菜叶绿素荧光参数对nano-ZnO长期暴露不敏感,但蕹菜的生物量累积易受nano-ZnO长期暴露的影响。  相似文献   
4.
Biodiesel produced by transesterification of waste animal oil is a promising green fuel in the future. ZnO-Al2O3 and ZnO/Zn2Al composition oxides were prepared by co-precipitation method and impregnation method, respectively. The above catalysts were characterized by X-ray diffraction (XRD), Brunauer--Emmett--Teller (BET) and CO2 adsorption and temperature-programmed desorption (CO2-TPD) and show that the high activity for the catalyst is attributed to its high alkalinity. The reaction parameters were optimized and the results show that the transesterification ratio of waste animal oil can reach 98.7% with 10% ZnO/Zn2Al catalyst after 2 h. Moreover, 10%ZnO/Zn2Al compound oxides can be active for the successive cycles. The glycerol as a predominant by-product after transesterification is of high purity with high use value.  相似文献   
5.
An efficient photocatalyst was fabricated by assembling quantum dots (QDs) onto one-dimensionally-ordered ZnO nanorods, and the photocatalytic properties for Methyl Orange degradation were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV-Vis-NIR absorption spectroscopy and photoluminescence. The results indicate that the catalyst with assembled QDs is more favorable for the degradation than the pristine ZnO nanorods. The QDs with core-shell structure lower the photocatalytic ability due to the higher carder transport barrier of the ZnS shell layer. Besides its degradation efficiency, the photocatalyst has several advantages given that the one-dimensionally-ordered ZnO nanorods have been grown directly on indium tin oxide substrates. The article provides a new method to design an effective and easily recyclable photocatalyst.  相似文献   
6.
In this study, we have evaluated the ability of zinc oxide (ZnO) nanoparticles to induce pulmonary and extrapulmonary toxicities was examined in rats following intratracheal (IT) instillation. Lungs of rats were instilled IT with either phosphate-buffered saline (PBS)?+?1% Tween 80, ZnO nanoparticles, carbonyl iron or quartz particles at a dose of 1 or 5?mg?kg?1 body weight. Following exposure, bronchoalveolar lavage (BAL) fluid, blood samples and organs including lung, liver, kidneys, heart, pancreas, and brain were collected at 24?h, 1 week, or 1 month of post instillation of nanoparticles and different parameters estimated to assess toxicity. BAL fluid was analyzed for lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) to assess pulmonary toxicity. Exposures to ZnO or quartz particles produced transient dose-dependant increase in BAL fluid LDH and ALP activities at all post exposure periods. Blood samples were analyzed for the tissue damage biomarkers to assess extrapulmonary toxicity. Histopathological examination of lung, liver and kidneys revealed dose-dependent degeneration and necrosis which worsened at 1 week post-instillation periods but recovered at 1 month post instillation. Histopathological examination of rat pancreas, heart, and brain exposed to quartz or ZnO particles showed no marked changes. Data suggest the instillation of ZnO nanoparticles produced a greater pulmonary toxicity in rats comparable with quartz; and extrapulmonary toxicities of these ZnO nanoparticles might be due to translocation into liver and kidney.  相似文献   
7.
The delafossite CuCrO2 elaborated by sol-gel from 40 nm diameter colloid is optically active in the visible region. It is characterized physically and photoelectrochemically. The microstructure is fairly homogenous with a mean crystallite size of ca. 2 μm. The optical gap (1.30 eV), determined from the diffuse reflectance, is well suited to the sunlight spectrum. The Mott Schottky plot is characteristic of P-type conductivity with a flat band potential of -0.26 VSCE. As application, the photoreduction of chromate is successfully achieved in air-equilibrated suspension CuCrO2/ZnO (1/1). CuCrO2 is photoactivated by visible light and the electrons in the conduction band (-1.34 VSCE) are injected to ZnO. In the presence of salicylic acid, a conversion of Cr(VI) to Cr(III) of 57% is obtained under optimal conditions (pH 3 at 25℃, 5×10-4 mol/L) because of the HCrO4- dark adsorption onto ZnO (4HCrO4- + 3C7H6O3 + 18O2 + 16H+ → 4Cr3+ + 21CO2 + 19H2O, ΔG0 = -557 kcal/mol). Prolonged illumination is accompanied by a deceleration in the photoactivity owing to the competitive water reduction, an issue of energetic concern. The hetero-system exhibits self sensitization for hydrogen production with an evolution rate of 149 μmol/(hr·g).  相似文献   
8.
Indiscriminate release of metal oxide nanoparticles (NPs) into the environment due to anthropogenic activities has become a serious threat to the ecological system including plants. The present study assesses the toxicity of nano-CuO on rice (Oryza sativa cv. Swarna) seedlings. Three different levels of stress (0.5 mM, 1.0 mM and 1.5 mM suspensions of copper II oxide, <50 nm particle size) were imposed and seedling growth performance was studied along control at 7 and 14 d of experiment. Modulation of ascorbate–glutathione cycle, membrane damage, in vivo ROS detection, foliar H2O2 and proline accumulation under nano-CuO stress were investigated in detail to get an overview of nano-stress response of rice. Seed germination percentage was significantly reduced under stress. Higher uptake of Evans blue by nano-CuO stressed roots over control indicates loss of root cells viability. Presence of dark blue and deep brown spots on leaves evident after histochemical staining with NBT and DAB respectively indicate severe oxidative burst under nano-copper stress. APX activity was found to be significantly increased in 1.0 and 1.5 mM CuO treatments. Nevertheless, elevated APX activity might be insufficient to scavenge all H2O2 produced in excess under nano-CuO stress. That may be the reason why stressed leaves accumulated significantly higher H2O2 instead of having enhanced APX activity. In addition, increased GR activity coupled with isolated increase in GSH/GSSG ratio does not seem to prevent cells from oxidative damages, as evident from higher MDA level in leaves of nano-CuO stressed seedlings over control. Enhanced proline accumulation also does not give much protection against nano-CuO stress. Decline in carotenoids level might be another determining factor of meager performance of rice seedlings in combating nano-CuO stress induced oxidative damages.  相似文献   
9.
纳米材料对斑马鱼的氧化损伤及应激效应研究   总被引:8,自引:1,他引:7       下载免费PDF全文
以斑马鱼(Daniorerio)为受试动物,研究了纳米及常规TiO2、ZnO悬浮液对其鳃、消化道及肝脏的氧化损伤及应激效应,同时对纳米及常规TiO2、ZnO悬浮液中的颗粒形貌特征及·OH生成量进行了测定.结果发现,虽然纳米TiO2、ZnO颗粒与其常规颗粒在溶液中的粒径分布接近,但50mg/L纳米TiO2、ZnO悬浮液中·OH产生量(96h光照下,分别为2.17mmol/L、0.72mmol/L)远远高于50mg/L常规颗粒(未检测到).50mg/L纳米TiO2处理下,斑马鱼肝脏中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、还原型谷胱甘肽(GSH)、蛋白质羰基含量分别为对照的70.2%、65.4%、53%、178.1%;消化道中SOD活性及GSH、丙二醛(MDA)含量分别为对照的149.6%、212.9%、217.2%;鳃中MDA含量为对照的160.9%.而50mg/L常规TiO2悬浮液对斑马鱼没有产生毒理效应.5mg/L纳米及常规ZnO对斑马鱼肝脏的氧化伤害最强,其中5mg/L纳米ZnO处理组中SOD、CAT活性及GSH、MDA含量分别为对照的62.9%、53.1%、45.2%、204.2%,5mg/L常规ZnO处理组中SOD、CAT活性及GSH、MDA含量分别为对照组48.3%、51.8%、34.6%、289.6%;虽然斑马鱼鳃及消化道也受到明显氧化应激效应(p0.05),但并没有受到氧化损伤.研究表明,团聚作用对不同化学组成纳米颗粒的毒性影响程度不同;且不同化学组成纳米颗粒在生物体内可能通过不同机制产生了不同种类的ROS,从而对不同细胞组分产生的氧化损伤及应激效应是其重要的毒理机制.  相似文献   
10.
Ag/ZnO光催化降解甲基对硫磷研究   总被引:26,自引:0,他引:26  
描述了掺杂体系Ag/ZnO用于甲基对硫磷水溶液光催化降解,有氧存在下,经UV照射对甲基对硫磷光降解是有效的,并讨论了影响光降解中甲基硫磷诸因素,初步探讨了光降解机理和动力学,起始降解物为C2H6P^+S和O2NH4O,且是一级反应,半衰期为1.82min。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号