首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1971篇
  免费   349篇
  国内免费   103篇
安全科学   19篇
废物处理   10篇
环保管理   881篇
综合类   846篇
基础理论   233篇
污染及防治   44篇
评价与监测   76篇
社会与环境   248篇
灾害及防治   66篇
  2023年   27篇
  2022年   42篇
  2021年   62篇
  2020年   62篇
  2019年   60篇
  2018年   39篇
  2017年   77篇
  2016年   78篇
  2015年   89篇
  2014年   75篇
  2013年   143篇
  2012年   123篇
  2011年   127篇
  2010年   98篇
  2009年   98篇
  2008年   74篇
  2007年   95篇
  2006年   121篇
  2005年   98篇
  2004年   86篇
  2003年   95篇
  2002年   92篇
  2001年   63篇
  2000年   71篇
  1999年   62篇
  1998年   40篇
  1997年   33篇
  1996年   40篇
  1995年   36篇
  1994年   22篇
  1993年   28篇
  1992年   16篇
  1991年   17篇
  1990年   19篇
  1989年   8篇
  1988年   9篇
  1987年   12篇
  1986年   7篇
  1985年   3篇
  1984年   7篇
  1983年   8篇
  1982年   7篇
  1981年   6篇
  1980年   9篇
  1979年   6篇
  1977年   7篇
  1975年   5篇
  1974年   6篇
  1971年   5篇
  1970年   2篇
排序方式: 共有2423条查询结果,搜索用时 15 毫秒
1.
Microplastics have been found in large quantities in agricultural soil and now become a major global issue. Different types of microplastic have adverse effects on agricultural soil. The most widely used method for the extraction of microplastics in agricultural soil is the density floatation method by using saturated NaCl solution. This method includes the pre-digestion of soil samples with H2O2 to remove all the organic matter present in the soil. Different types of microplastic particles were extracted and identified by using ATR-FTIR viz polypropylene, polybutylene tetrapthalate, polyethylene, polystyrene, and polyethylene tetrapthalate. The crystalline nature of extracted microplastic was checked by employing XRD analytical technique. Floatation with higher density saturated sodium chloride (NaCl) solution recovered approximately 80% MPs from soil. Floatation methods were found to be effective for extracting microplastics from soils.  相似文献   
2.
典型地区农用地污染调查及风险管控标准探讨   总被引:2,自引:0,他引:2  
针对《土壤污染风险管控标准——农用地土壤污染风险管控标准》(GB 15618—2018),提出以土壤中全量浓度筛选值和管控值作为衡量农用地土壤污染风险管控的标准,对湖南省部分稻田农用地土壤及点对点稻米样品中镉、铅、砷、汞的总量和有效态浓度及稻米中含量进行监测,根据重金属总量浓度分为低风险、中风险、高风险3组。结果显示:(1)土壤及稻米中镉含量基本为随着风险级别的升高而增加,铅、砷在土壤和稻米中含量无规律性结果,汞监测结果均为未检出。(2)低风险组稻米镉超标率为12. 0%,高风险组稻米镉达标率为33. 3%,表明利用总量浓度对农用地土壤潜在风险进行分组存在一定的局限性。(3)依据4种重金属在土壤中总量及稻米(早稻)中含量情况,对风险级别进行调整并综合判断:有58个样品为低风险组,占样品总数的68. 2%,超标率为零;有15个样品为中风险组,占样品总数的17. 7%,超标率为80. 0%;有12个样品为高风险组,占样品总数的14. 1%,超标率为100. 0%。调整后评价结果与上述标准的划分目标更接近,能够提高上述标准的准确性和实用性。  相似文献   
3.
A nutrient loss reduction strategy is necessary to guide the efforts of improving water quality downstream of an agricultural watershed. In this study, the effectiveness of two winter cover crops, namely cereal rye and annual ryegrass, is explored as a loss reduction strategy in a watershed that ultimately drains into a water supply reservoir. Using a coupled optimization-watershed model, optimal placements of the cover crops were identified that would result in the tradeoffs between nitrate-N losses reduction and adoption levels. Analysis of the 10%, 25%, 50%, and 75% adoption levels extracted from the optimal tradeoffs showed that the cover crop placements would provide annual nitrate-N loss reductions of 3.0%–3.7%, 7.8%–8.8%, 15%–17.5%, and 20.9%–24.3%, respectively. In addition, for the same adoption levels (i.e., 10%–75%), sediment (1.8%–17.7%), and total phosphorus losses (0.8%–8.6%) could be achieved. Results also indicate that implementing each cover crop on all croplands of the watershed could cause annual water yield reduction of at least 4.8%, with greater than 28% in the months of October and November. This could potentially be detrimental to the storage volume of the downstream reservoir, especially in drought years, if cover crops are adopted in most of the reservoir's drainage area. Evaluating water yield impacts, particularly in periods of low flows, is thus critical if cover crops are to be considered as best management practices in water supply watersheds.  相似文献   
4.
Farmers in the Sahel have been acknowledged for reclaiming degraded lands and improving food security by ingeniously modifying traditional agroforestry, water, and soil management practices. Despite the advantages offered by this range of farming techniques, their adoption rate is influenced by several factors. Using multivariate probit models and a correlation coefficient, this article examines the factors influencing the adoption of five land management practices based on 220 household and 40 farm surveys in four adjacent rural communities in southern Burkina Faso. The model results indicate that household labor force, education of household head, land tenure security, livestock holding, and membership in farmers’ groups influence the adoption of zaï practice, composting, improved fallow, stone bunds, and live hedges. However, two of the surveyed factors ‐ number of farms and visit by agricultural extension staff during the 12 months prior to the survey ‐ were not significant. Furthermore, a significant correlation was found between different land management practices, e.g., the decision to practice zaï is significantly linked to that of live hedges and composting. Zaï practice and stone bunds are considered labor intensive, which explains their significant correlations with household labor force at the 1% and 5% levels of significance, respectively.  相似文献   
5.
Biomass,as fuelwood,is one of the major sources of energy in rural areas,especially in the mountainous regions of the world.As the increasing human population exerts more pressure on the forest thereby inducing an adverse effect on the sustainability of the ecosystem,which consequently causes fuelwood crisis at a local level,this crisis is spatio-temporal in nature.Thus,the major objective of this study is to assess the sustainability of fuelwood at different probable scenarios at a micro watershed level.The present study was conducted in the Phakot watershed,the Tehri Garhwal district of central Himalaya in India,during 2006-2008.Based on the vegetation composition in the study area,the net primary productivity(NPP)value of the Oak forest,and mixed oak and sal forests,was used for the quantification of fuelwood availability in evergreen and deciduous forests,respectively.The fuelwood demand was calculated on the basis of seasonal fuelwood consumption values.Nine probable permutations for availability-demand scenarios assuming the existence of high(H),low(L)and average(A)conditions were analyzed for evaluating the stress.The available annual harvestable fuelwood in the watershed is in the minimum and maximum ranges of 2283.28 to 4066.00 tons,respectively,per year whereas it has a demand of 110.76 tons as the minimum to 3659 tons as the maximum annually.This shows that in the current availabilitydemand scenario,the watershed does not have fuelwood crisis in the present situation but needs to maintain the sustainability of the system.Based on our study,it is concluded that,globally,more spatio-temporal study is required to understand the issues at the local level.  相似文献   
6.
排污权初始分配是排污权交易的起点和基础,在分配模式和实证研究方面需要加强。采用地区人口法、经济总量法、历史排污量法、环境容量法和综合分配法5种模式研究了鄱阳湖流域11个地市水污染物化学需氧量(COD)与氨氮的初始排污权分配。结果表明:COD和氨氮初始排污权在地市之间的分配格局相似;南昌、新余与鹰潭3市按经济总量模式分配的排污量明显高于其它模式,上饶、吉安两市人口分配模式高于其它模式,景德镇、九江两市历史排污量模式高于其它模式,赣州市环境容量模式高于其它模式,宜春市综合模式高于其它模式。综合分配模式为赣州市排污权总量最高,南昌、九江、吉安、宜春、抚州和上饶6市次之,景德镇、萍乡、新余、鹰潭4市最低。总体来看,排污权配额因分配模式不同而有所差异,综合分配模式得到的初始排污权最为合理。建议鄱阳湖流域严格执行综合分配模式下的各地市初始排污权分配额度,确保区域经济社会与生态环境的协调发展。  相似文献   
7.
Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.  相似文献   
8.
Green infrastructure (GI) is quickly gaining ground as a less costly, greener alternative to traditional methods of stormwater management. One popular form of GI is the use of rain gardens to capture and treat stormwater. We used life cycle assessment (LCA) to compare environmental impacts of residential rain gardens constructed in the Shepherd's Creek watershed of Cincinnati, Ohio to those from a typical detain and treat system. LCA is an internationally standardized framework for analyzing the potential environmental performance of a product or service by including all stages in its life cycle, including material extraction, manufacturing, use, and disposal. Complementary to the life cycle environmental impact assessment, the life cycle costing approach was adopted to compare the equivalent annual costs of each of these systems. These analyses were supplemented by modeling alternative scenarios to capture the variability in implementing a GI strategy. Our LCA models suggest rain garden costs and impacts are determined by labor requirement; the traditional alternative's impacts are determined largely by the efficiency of wastewater treatment, while costs are determined by the expense of tunnel construction. Gardens were found to be the favorable option, both financially (~42% cost reduction) and environmentally (62‐98% impact reduction). Wastewater utilities may find significant life cycle cost and environmental impact reductions in implementing a rain garden plan.  相似文献   
9.
To assess historical loads of nitrogen (N), phosphorus (P), and suspended sediment (SS) from the nontidal Chesapeake Bay watershed (NTCBW), we analyzed decadal seasonal trends of flow‐normalized loads at the fall‐line of nine major rivers that account for >90% of NTCBW flow. Evaluations of loads by season revealed N, P, and SS load magnitudes have been highest in January‐March and lowest in July‐September, but the temporal trends have followed similar decadal‐scale patterns in all seasons, with notable exceptions. Generally, total N (TN) load has dropped since the late 1980s, but particulate nutrients and SS have risen since the mid‐1990s. The majority of these rises were from Susquehanna River and relate to diminished net trapping at the Conowingo Reservoir. Substantial rises in SS were also observed, however, in other rivers. Moreover, the summed rise in particulate P load from other rivers is of similar magnitude as from Susquehanna. Dissolved nutrient loads have dropped in the upland (Piedmont and above) rivers, but risen in two small rivers in the Coastal Plain affected by lagged groundwater input. In addition, analysis of fractional contributions revealed consistent N trends across the upland watersheds. Finally, total N:total P ratios have declined in most rivers, suggesting the potential for changes in nutrient limitation. Overall, this integrated study of historical data highlights the value of maintaining long‐term monitoring at multiple watershed locations.  相似文献   
10.
We present conceptual and quantitative models that predict changes in fertilizer‐derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer‐derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi‐Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号