首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
安全科学   1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
A new safety characteristic the “dustiness” according to VDI 2263 – part 9 (Verein Deutscher Ingenieure, 2008) is investigated. Dustiness means the tendency of a dust to form clouds. The paper deals with the influence of the dustiness on vented dust explosions. In order to look into the effects of the dustiness on dust cloud formation and explosion properties experiments and simulations in a vertical dust dispersion glass tube apparatus were carried out.Preliminary explosion experiments showed that the dustiness has an influence on the reduced explosion pressure in a vented 75 L test apparatus. Dusts with comparable pmax and KSt values and different dustiness were tested. Dusts with higher dustiness produced higher overpressures, despite comparable safety characteristics. In order to verify the results for applications in the process industries further tests with different settings are planned as well as industrial scale experiments. Characteristics of the dust such as particle size, density, specific surface area and particle shape, which influence the dispersibility, have been determined experimentally.The Euler/Lagrange and the Euler/Euler approaches are compared for simulating an exemplary dust/air mixture. Especially sedimentation and the ability of the approaches to simulate the tendency of dust to stay airborne were investigated. The Euler/Lagrange approach is better suited for simulating local dust concentrations, particle size distributions and particle forces. It could be used to point out regions of high dust concentrations in a vessel. With the Euler/Euler method it is possible to achieve fast solutions for one specified diameter, but the simulated dust/air mixtures are always more homogenous than in reality. ANSYS CFX version 13 was used in all simulations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号