首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1441篇
  免费   745篇
  国内免费   477篇
安全科学   85篇
废物处理   48篇
环保管理   134篇
综合类   1662篇
基础理论   372篇
污染及防治   252篇
评价与监测   67篇
社会与环境   39篇
灾害及防治   4篇
  2024年   6篇
  2023年   52篇
  2022年   97篇
  2021年   112篇
  2020年   123篇
  2019年   115篇
  2018年   90篇
  2017年   95篇
  2016年   101篇
  2015年   106篇
  2014年   127篇
  2013年   176篇
  2012年   143篇
  2011年   160篇
  2010年   113篇
  2009年   149篇
  2008年   102篇
  2007年   128篇
  2006年   114篇
  2005年   82篇
  2004年   69篇
  2003年   79篇
  2002年   49篇
  2001年   41篇
  2000年   45篇
  1999年   43篇
  1998年   24篇
  1997年   22篇
  1996年   16篇
  1995年   25篇
  1994年   8篇
  1993年   16篇
  1992年   10篇
  1991年   4篇
  1990年   5篇
  1987年   3篇
  1986年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有2663条查询结果,搜索用时 15 毫秒
1.
浮游植物是水生态系统中最重要的组成部分,因其对水环境变化敏感而常被用于指示水环境状态,但其对环境的响应受分类方法的影响.为了解洞庭湖浮游植物种群(门、属)和功能群(FG)两种分类法对环境的驱动响应特征和适用性,于2019年3~12月分水期对该湖共进行了4次采样,比较分析了浮游植物种群和功能群的分布特征及其与环境因子的响应关系,并对比了TLI指数、 Shannon-Wiener指数、Q指数等评价方法在洞庭湖的适用性.结果表明,洞庭湖共检出浮游植物6门61属,可划分为23个功能群和9个优势功能群,功能群演替趋势为P/MP/D(3月)■月)■月)■(12月).层次分割结果表明,洞庭湖浮游植物的种群分布与变化受环境因子的驱动大于空间驱动;影响浮游植物种群和功能群的主要环境因子为水温(WT)、高锰酸盐指数、溶解氧(DO)、电导率(Cond)、水位(WL)和总磷(TP),环境因子对两者的独立解释性排序相差不大.RDA分析表明,浮游植物功能群对环境因子的响应要优于浮游植物种群.综合对比分析发现,利用Q指数进行水质评价在洞庭湖水体有较好的适用性.  相似文献   
2.
刘钰  曾妍妍  周金龙  闫志雲  白凡 《环境科学》2023,44(12):6778-6789
开展地下水污染风险评价研究是地下水污染防控的重要环节.以巴里坤-伊吾盆地平原区地下水为研究对象,构建DRSTIW模型进行地下水脆弱性评价;根据污染场地调查资料和土地利用类型划分点源和面源污染,进行地下水污染荷载评价;考虑地下水的原生价值、经济价值和生态价值进行地下水功能价值评价;利用ArcGIS的地图代数功能生成地下水污染风险评价图,采用ROC曲线验证地下水污染风险评价结果,通过计算G指数得到地下水污染风险空间冷热点分布,结合重心和标准差椭圆对热点变动情况进行定量分析.结果表明,研究区地下水污染风险整体较低,高污染风险区和较高污染风险区仅占研究区总面积的6.8%,主要位于伊吾县的淖毛湖镇、盐池镇,巴里坤县的奎苏镇、石人子乡、花园乡和兵团红山农场,该区域内地下水埋深较浅,土壤表层和包气带介质透水性能较强,吸附能力较差,加之污染源分布较集中,使得污染物易于迁移富集,在地下水高脆弱性和高污染荷载的双重作用下导致局部区域地下水污染风险升高.受人类活动影响,地下水污染风险在空间上存在一定的集聚现象,整体表现为由西北向东南演变的趋势.地下水污染风险评价结果为划分地下水污染防治区提供重要参考.  相似文献   
3.
• The SRAO phenomena tended to occur only under certain conditions. • High amount of biomass and non-anaerobic condition is requirement for SRAO. • Anammox bacteria cannot oxidize ammonium with sulfate as electron acceptor. • AOB and AnAOB are mainly responsible for ammonium conversion. • Heterotrophic sulfate reduction mainly contributed to sulfate conversion. For over two decades, sulfate reduction with ammonium oxidation (SRAO) had been reported from laboratory experiments. SRAO was considered an autotrophic process mediated by anammox bacteria, in which ammonium as electron donor was oxidized by the electron acceptor sulfate. This process had been attributed to observed transformations of nitrogenous and sulfurous compounds in natural environments. Results obtained differed largely for the conversion mole ratios (ammonium/sulfate), and even the intermediate and final products of sulfate reduction. Thus, the hypothesis of biological conversion pathways of ammonium and sulfate in anammox consortia is implausible. In this study, continuous reactor experiments (with working volume of 3.8L) and batch tests were conducted under normal anaerobic (0.2≤DO<0.5 mg/L) / strict anaerobic (DO<0.2 mg/L) conditions with different biomass proportions to verify the SRAO phenomena and identify possible pathways behind substrate conversion. Key findings were that SRAO occurred only in cases of high amounts of inoculant biomass under normal anaerobic condition, while absent under strict anaerobic conditions for same anammox consortia. Mass balance and stoichiometry were checked based on experimental results and the thermodynamics proposed by previous studies were critically discussed. Thus anammox bacteria do not possess the ability to oxidize ammonium with sulfate as electron acceptor and the assumed SRAO could, in fact, be a combination of aerobic ammonium oxidation, anammox and heterotrophic sulfate reduction processes.  相似文献   
4.
• Magnetotactic bacteria (MTB) synthesize magnetic nanoparticle within magnetosomes. • The morphologic and phylogenetic diversity of MTB were summarized. • Isolation and mass cultivation of MTB deserve extensive research for applications. • MTB can remove heavy metals, radionuclides, and organic pollutants from wastewater. Magnetotactic bacteria (MTB) are a group of Gram-negative prokaryotes that respond to the geomagnetic field. This unique property is attributed to the intracellular magnetosomes, which contains membrane-bound nanocrystals of magnetic iron minerals. This review summarizes the most recent advances in MTB, magnetosomes, and their potential applications especially the environmental pollutant control or remediation. The morphologic and phylogenetic diversity of MTB were first introduced, followed by a critical review of isolation and cultivation methods. Past research has devoted to optimize the factors, such as oxygen, carbon source, nitrogen source, nutrient broth, iron source, and mineral elements for the growth of MTB. Besides the applications of MTB in modern biological and medical fields, little attention was made on the environmental applications of MTB for wastewater treatment, which has been summarized in this review. For example, applications of MTB as adsorbents have resulted in a novel magnetic separation technology for removal of heavy metals or organic pollutants in wastewater. In addition, we summarized the current advance on pathogen removal and detection of endocrine disruptor which can inspire new insights toward sustainable engineering and practices. Finally, the new perspectives and possible directions for future studies are recommended, such as isolation of MTB, genetic modification of MTB for mass production and new environmental applications. The ultimate objective of this review is to promote the applications of MTB and magnetosomes in the environmental fields.  相似文献   
5.
Lagoons are defined as wetlands separated from the sea coasts on which they are located and sit between continental and marine aquatic ecosystems. Çakalburnu Lagoon is a coastal wetland on the southern side of the Bay of ?zmir. Microorganisms, which are quite sensitive to changes occurring in environmental factors, are commonly used to determine the impact of environmental effects on the functioning of the ecosystem. In this study, variations in the abundance and biomass of picoplankton (Synechococcus spp. and bacteria) and the abundance of viruses, which identify the ecological productivity of the food chain, were seasonally examined by epifluorescence microscopy. Moreover, the microbial abundance and biomass relation over time between the physical and chemical parameters was evaluated. According to our results, the maximum abundance of Synechococcus spp. and viruses was 6.7?×?104 cell/ml and 9.9?×?108?cell/ml in the summer, respectively. Otherwise, the highest level of bacteria was measured at 3.6?×?107 cell/ml in the spring. Based on the principal component analysis and Pearson correlation analysis results, we concluded that total suspended solids, Chl-a, particulate organic carbon and particulate organic nitrogen were the major parameters influencing the observed variability of the lagoon system. Overall, to protect and improve the ecological and microbiological quality of aquatic systems such as lagoons, the necessary monitoring and measurement studies should be conducted in these sensitive areas.  相似文献   
6.
•Bacterial concentrations from eight stages were 104–105copies/m3. •Diameter influenced clustering of bacterial and HPB lineages. •Dg of 8 HPB ranged from 2.42 to 5.09 μm in composting areas. •Dg of 8 HPB ranged from 3.70 to 8.96 μm in packaging areas. •HPB had high concentrations and small sizes in composting areas. Composting plants are regarded as one of the important sources of environmental bioaerosols. However, limitations in the size distribution of airborne bacteria have prevented our comprehensive understanding of their risk to human health and their dispersal behavior. In this study, different sizes of airborne bacteria were collected using an eight-stage impactor from a full-scale composting facility. Size-related abundance and communities of airborne bacteria as well as human pathogenic bacteria (HPB) were investigated using 16S rRNA gene sequencing coupled with droplet digital PCR. Our results indicate that the bacterial concentrations from the eight stages were approximately 104–105copies/m3. Although no statistical correlation was detected between the particle size and the Shannon index, the influence of size on bacterial lineages was observed in both composting and packaging areas. For airborne bacteria from different stages, the dominant phyla were Firmicutes, Proteobacteria, and Actinobacteria, and the dominant genera was Bacillus. Seven out of eight HPB with a small geometric mean aerodynamic diameter had a high concentration in composting areas. Based on diameters of 2.42 to 5.09 μm, most HPB in the composting areas were expected to be deposited on the bronchus and secondary bronchus. However, in the packaging areas, the deposition of HPB (diameters 3.70 to 8.96 μm) occurred in the upper part of the respiratory tract. Our results on the size distribution, abundance, and diversity of these bacteria offer important information for the systematic evaluation of bacterial pathogenicity and the potential health impacts on workers in composting plants and the surrounding residents.  相似文献   
7.
土壤微生物决定着土壤生态系统的养分周转状况,其死生物物质在土壤有机碳(SOC)积累中发挥关键作用.然而,目前缺乏对土壤微生物群落丰度及其死生物物质如何响应农业土地集约利用程度调整的了解.为弥补这一知识缺口,基于土地集约化利用程度,设置小麦-玉米周年轮作(CC)、临时草地与小麦种植交替(TG)和多年生草地(PG)这3个处理开展长期定位试验,采用基于数字PCR和微生物标志物氨基糖的检测技术,以探究农业土地集约利用程度调整对土壤细菌和真菌数量,以及细菌、真菌和总微生物死生物物质C积累及其对土壤SOC封存贡献的影响,进一步明确驱动细菌、真菌和总微生物死生物物质C积累的关键因子.结果表明,与土壤细菌群落丰度相比,真菌群落丰度受到农业土地集约利用程度调整的强烈影响,随土地集约利用程度的降低而增加.在3种土地集约利用程度处理下,土壤总微生物死生物物质C均主导SOC积累,对SOC的贡献率分别达到52.78%、 58.36%和68.87%,呈现随土地集约利用程度降低而升高的趋势;真菌死生物物质C占总微生物死生物物质C的比例均大于80%,说明其对总微生物死生物物质C的绝对主导地位,且受土地集约利用程度降低...  相似文献   
8.
Ecologically relevant traits of organisms in an assemblage determine an ecosystem's functional fingerprint (i.e., the shape, size, and position of multidimensional trait space). Quantifying changes in functional fingerprints can therefore provide information about the effects of diversity loss or gain through time on ecosystem condition and is a promising approach to monitoring ecological integrity. This, however, is seldom possible owing to limitations in historical surveys and a lack of data on organismal traits, particularly in diverse tropical regions. Using data from detailed bird surveys from 4 periods across more than a century, and morphological and ecological traits of 233 species, we quantified changes in the avian functional fingerprint of a tropical montane forest in the Andes of Colombia. We found that 78% of the variation in functional space, regardless of period, was described by 3 major axes summarizing body size, dispersal ability (indexed by wing shape), and habitat breadth. Changes in species composition significantly altered the functional fingerprint of the assemblage and functional richness and dispersion decreased 35–60%. Owing to species extirpations and to novel additions to the assemblage, functional space decreased over time, but at least 11% of its volume in the 2010s extended to areas of functional space that were unoccupied in the 1910s. The assemblage now includes fewer large-sized species, more species with greater dispersal ability, and fewer habitat specialists. Extirpated species had high functional uniqueness and distinctiveness, resulting in large reductions in functional richness and dispersion after their loss, which implies important consequences for ecosystem integrity. Conservation efforts aimed at maintaining ecosystem function must move beyond seeking to sustain species numbers to designing complementary strategies for the maintenance of ecological function by identifying and conserving species with traits conferring high vulnerability such as large body size, poor dispersal ability, and greater habitat specialization. Article impact statement: Changes in functional fingerprints provide a means to quantify the integrity of ecological assemblages affected by diversity loss or gain.  相似文献   
9.
Maintenance of biodiversity through seed banks and botanical gardens, where the wealth of species’ genetic variation may be preserved ex situ, is a major goal of conservation. However, challenges can persist in optimizing ex situ collections if trade-offs exist among cost, effort, and conserving species evolutionary potential, particularly when genetic data are not available. We evaluated the genetic consequences of population preservation informed by geographic (isolation by distance [IBD]) and environmental (isolation by environment [IBE]) distance for ex situ collections for which population provenance is available. We used 19 genetic and genomic data sets from 15 plant species to assess the proportion of population genetic differentiation explained by geographic and environmental factors and to simulate ex situ collections prioritizing source populations based on pairwise geographic distance, environmental distance, or both. Specifically, we tested the impact prioritizing sampling based on these distances may have on the capture of neutral, functional, or putatively adaptive genetic diversity and differentiation. Individually, IBD and IBE explained limited population genetic differences across all 3 genetic marker classes (IBD, 10–16%; IBE, 1–5.5%). Together, they explained a substantial proportion of population genetic differences for functional (45%) and adaptive (71%) variation. Simulated ex situ collections revealed that inclusion of IBD, IBE, or both increased allelic diversity and genetic differentiation captured among populations, particularly for loci that may be important for adaptation. Thus, prioritizing population collections based on environmental and geographic distance data can optimize genetic variation captured ex situ. For the vast majority of plant species for which there is no genetic information, these data are invaluable to conservation because they can guide preservation of genetic variation needed to maintain evolutionary potential within collections.  相似文献   
10.
甲烷氧化菌液在进入煤储层后会产生较高的毛管压力,且随着甲烷氧化菌降解煤层瓦斯的进行,毛管压力逐渐增大,容易引起水锁伤害。采取向甲烷氧化菌菌液加入复配表面活性剂以期减缓菌液造成的水锁伤害,通过测试所选表面活性剂十二烷基苯磺酸钠(SDBS)与椰子油脂肪酸二乙醇酰胺(CDEA)对菌液表面张力的降低程度来了解表面活性剂与菌液的配伍比例,并对含复配表面活性剂的甲烷氧化菌对煤层甲烷的降解进行研究。研究结果表明:表面活性剂与菌液最佳配伍比例为SDBS∶CDEA为1∶4,最佳配伍浓度为0.5%,且表面活性剂在菌液中稳定性较好;菌液中添加复配表活剂20 mL,在混合气体压力为2 MPa、氧浓度为 1%、温度为 30 ℃时,添加复配表面活剂菌液的甲烷最终降解率为51.65%,比未添加复配表面活剂菌液高出11%左右。因此,向甲烷氧化菌菌液中添加复配表面活性剂具有很好的适用性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号