首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1148篇
  免费   154篇
  国内免费   502篇
安全科学   80篇
废物处理   5篇
环保管理   128篇
综合类   866篇
基础理论   501篇
环境理论   2篇
污染及防治   66篇
评价与监测   49篇
社会与环境   101篇
灾害及防治   6篇
  2024年   5篇
  2023年   56篇
  2022年   98篇
  2021年   84篇
  2020年   90篇
  2019年   69篇
  2018年   61篇
  2017年   71篇
  2016年   70篇
  2015年   84篇
  2014年   72篇
  2013年   102篇
  2012年   106篇
  2011年   97篇
  2010年   74篇
  2009年   60篇
  2008年   73篇
  2007年   97篇
  2006年   75篇
  2005年   64篇
  2004年   41篇
  2003年   48篇
  2002年   33篇
  2001年   25篇
  2000年   25篇
  1999年   23篇
  1998年   14篇
  1997年   11篇
  1996年   13篇
  1995年   10篇
  1994年   11篇
  1993年   8篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1973年   1篇
排序方式: 共有1804条查询结果,搜索用时 46 毫秒
1.
以贵州花江峡谷花椒(Zanthoxylum bungeamun)林为研究对象,采用16S rRNA高通量测序技术,分析种植5、10、20、30 a花椒根际土壤细菌群落结构和多样性特征,探讨不同种植年限花椒土壤理化因子对根际细菌群落分布的影响,为喀斯特石漠化地区花椒农业可持续发展提供有效的理论依据。结果表明,随着花椒种植年限的增加,土壤含水率、pH和有效磷逐渐升高,有机质、铵态氮和硝态氮含量先降低后升高(P<0.05)。根际土壤细菌Shannon、Simpson指数总体呈现上升趋势,OTUs、Chao1指数在10a较低。PCo A分析显示,不同种植年限花椒根际细菌群落组成差异显著,并且随着年限的增加,群落结构趋于相似;差异指示种分析表明,5—30a差异指示种分别为Firmicutes(厚壁菌门)、Cyanobacteria(蓝藻菌门)、Planctomycetes(浮霉菌门)、Entotheonellaeota(肠杆菌门)。RDA分析表明,有机质和含水率与细菌群落分布显著相关(P<0.05)。系统发育多样性分析表明,丰富类群多样性与环境因子存在较多的正相关,稀有类群比丰富类群有更强的发育信号。Bug Base预测分析发现:随着年限增加根际土壤好氧细菌增加,厌氧细菌下降,5、10 a氧化胁迫耐受菌低于20、30 a,致病菌在5、10 a高于20、30 a。综上,种植年限影响了花椒根际土壤细菌群落多样性,不同年限根际土壤肥力不同使得土壤细菌选择性生长,随着一定时间发育花椒抗病能力提高。  相似文献   
2.
Estimates of biodiversity change are essential for the management and conservation of ecosystems. Accurate estimates rely on selecting representative sites, but monitoring often focuses on sites of special interest. How such site-selection biases influence estimates of biodiversity change is largely unknown. Site-selection bias potentially occurs across four major sources of biodiversity data, decreasing in likelihood from citizen science, museums, national park monitoring, and academic research. We defined site-selection bias as a preference for sites that are either densely populated (i.e., abundance bias) or species rich (i.e., richness bias). We simulated biodiversity change in a virtual landscape and tracked the observed biodiversity at a sampled site. The site was selected either randomly or with a site-selection bias. We used a simple spatially resolved, individual-based model to predict the movement or dispersal of individuals in and out of the chosen sampling site. Site-selection bias exaggerated estimates of biodiversity loss in sites selected with a bias by on average 300–400% compared with randomly selected sites. Based on our simulations, site-selection bias resulted in positive trends being estimated as negative trends: richness increase was estimated as 0.1 in randomly selected sites, whereas sites selected with a bias showed a richness change of −0.1 to −0.2 on average. Thus, site-selection bias may falsely indicate decreases in biodiversity. We varied sampling design and characteristics of the species and found that site-selection biases were strongest in short time series, for small grains, organisms with low dispersal ability, large regional species pools, and strong spatial aggregation. Based on these findings, to minimize site-selection bias, we recommend use of systematic site-selection schemes; maximizing sampling area; calculating biodiversity measures cumulatively across plots; and use of biodiversity measures that are less sensitive to rare species, such as the effective number of species. Awareness of the potential impact of site-selection bias is needed for biodiversity monitoring, the design of new studies on biodiversity change, and the interpretation of existing data.  相似文献   
3.
The lack of high-resolution distribution maps for freshwater species across large extents fundamentally challenges biodiversity conservation worldwide. We devised a simple framework to delineate the distributions of freshwater fishes in a high-resolution drainage map based on stacked species distribution models and expert information. We applied this framework to the entire Chinese freshwater fish fauna (>1600 species) to examine high-resolution biodiversity patterns and reveal potential conflicts between freshwater biodiversity and anthropogenic disturbances. The correlations between spatial patterns of biodiversity facets (species richness, endemicity, and phylogenetic diversity) were all significant (r = 0.43–0.98, p < 0.001). Areas with high values of different biodiversity facets overlapped with anthropogenic disturbances. Existing protected areas (PAs), covering 22% of China's territory, protected 25–29% of fish habitats, 16–23% of species, and 30–31% of priority conservation areas. Moreover, 6–21% of the species were completely unprotected. These results suggest the need for extending the network of PAs to ensure the conservation of China's freshwater fishes and the goods and services they provide. Specifically, middle to low reaches of large rivers and their associated lakes from northeast to southwest China hosted the most diverse species assemblages and thus should be the target of future expansions of the network of PAs. More generally, our framework, which can be used to draw high-resolution freshwater biodiversity maps combining species occurrence data and expert knowledge on species distribution, provides an efficient way to design PAs regardless of the ecosystem, taxonomic group, or region considered.  相似文献   
4.
Although experiences with ecological restoration continue to accumulate, the effectiveness of restoration for biota remains debated. We complemented a traditional taxonomic analysis approach with information on 56 species traits to uncover the responses of 3 aquatic (fish, macroinvertebrates, macrophytes) and 2 terrestrial (carabid beetles, floodplain vegetation) biotic groups to 43 hydromorphological river restoration projects in Germany. All taxonomic groups responded positively to restoration, as shown by increased taxonomic richness (10–164%) and trait diversity (habitat, dispersal and mobility, size, form, life history, and feeding groups) (15–120%). Responses, however, were stronger for terrestrial than aquatic biota, and, contrary to our expectation, taxonomic responses were stronger than those of traits. Nevertheless, trait analysis provided mechanistic insights into the drivers of community change following restoration. Trait analysis for terrestrial biota indicated restoration success was likely enhanced by lateral connectivity and reestablishment of dynamic processes in the floodplain. The weaker response of aquatic biota suggests recovery was hindered by the persistence of stressors in the aquatic environment, such as degraded water quality, dispersal constraints, and insufficient hydromorphological change. Therefore, river restoration requires combined local- and regional-scale approaches to maximize the response of both aquatic and terrestrial organisms. Due to the contrasting responses of aquatic and terrestrial biota, the planning and assessment of river restoration outcomes should consider effects on both components of riverine landscapes.  相似文献   
5.
采用分子生物学手段16S rDNA克隆文库方法对缺氧/好氧膜生物反应器(AO-MBR)的好氧池与缺氧池中细菌进行了多样性研究.实验结果表明,好氧池污泥样品的克隆文库包括9个类群,其中变形菌(Proteobacteria)和拟杆菌(Bacteroidetes)在文库中所占比例最大,分别为37.04%和14.81%;其次是酸杆菌(Acidobacteria)、未培养菌(uncultured bacterium)、绿菌(Chlorobi)和未培养的绿弯菌(uncultured Chloroflexi bacterium)、浮霉状菌(Planctomycetes),分别为11.11%、11.11%、7.41%、7.41%和5.56%;硝化螺旋菌(Nitrospirae)和裸藻门(Euglenozoa)所占比例相对较小,均为1.85%.缺氧池样品克隆文库包括10个类群,其中变形菌(Proteobacteria)、拟杆菌(Bacteroidetes)和未培养菌(uncultured bacterium)在文库中所占比例最大,分别为27.91%、13.95%和12.79%;其次是浮霉状菌(Planctomycetes)、酸杆菌(Acidobacteria)和绿弯菌(Chloroflexi),在文库中所占比例分别为9.3%、9.3%和9.3%;硝化螺旋菌(Nitrospirae)、裸藻门(Euglenozoa)、芽单胞菌(Gemmatimonadetes)和放线菌(Actinobacteria)所占比例相对较少,分别为6.98%、8.14%、1.16%和1.16%.两池细菌的主要类群相似,但菌属及比例有所差异,变形菌是系统中的主要脱氮菌属.  相似文献   
6.
Maintenance of biodiversity through seed banks and botanical gardens, where the wealth of species’ genetic variation may be preserved ex situ, is a major goal of conservation. However, challenges can persist in optimizing ex situ collections if trade-offs exist among cost, effort, and conserving species evolutionary potential, particularly when genetic data are not available. We evaluated the genetic consequences of population preservation informed by geographic (isolation by distance [IBD]) and environmental (isolation by environment [IBE]) distance for ex situ collections for which population provenance is available. We used 19 genetic and genomic data sets from 15 plant species to assess the proportion of population genetic differentiation explained by geographic and environmental factors and to simulate ex situ collections prioritizing source populations based on pairwise geographic distance, environmental distance, or both. Specifically, we tested the impact prioritizing sampling based on these distances may have on the capture of neutral, functional, or putatively adaptive genetic diversity and differentiation. Individually, IBD and IBE explained limited population genetic differences across all 3 genetic marker classes (IBD, 10–16%; IBE, 1–5.5%). Together, they explained a substantial proportion of population genetic differences for functional (45%) and adaptive (71%) variation. Simulated ex situ collections revealed that inclusion of IBD, IBE, or both increased allelic diversity and genetic differentiation captured among populations, particularly for loci that may be important for adaptation. Thus, prioritizing population collections based on environmental and geographic distance data can optimize genetic variation captured ex situ. For the vast majority of plant species for which there is no genetic information, these data are invaluable to conservation because they can guide preservation of genetic variation needed to maintain evolutionary potential within collections.  相似文献   
7.
Ecologically relevant traits of organisms in an assemblage determine an ecosystem's functional fingerprint (i.e., the shape, size, and position of multidimensional trait space). Quantifying changes in functional fingerprints can therefore provide information about the effects of diversity loss or gain through time on ecosystem condition and is a promising approach to monitoring ecological integrity. This, however, is seldom possible owing to limitations in historical surveys and a lack of data on organismal traits, particularly in diverse tropical regions. Using data from detailed bird surveys from 4 periods across more than a century, and morphological and ecological traits of 233 species, we quantified changes in the avian functional fingerprint of a tropical montane forest in the Andes of Colombia. We found that 78% of the variation in functional space, regardless of period, was described by 3 major axes summarizing body size, dispersal ability (indexed by wing shape), and habitat breadth. Changes in species composition significantly altered the functional fingerprint of the assemblage and functional richness and dispersion decreased 35–60%. Owing to species extirpations and to novel additions to the assemblage, functional space decreased over time, but at least 11% of its volume in the 2010s extended to areas of functional space that were unoccupied in the 1910s. The assemblage now includes fewer large-sized species, more species with greater dispersal ability, and fewer habitat specialists. Extirpated species had high functional uniqueness and distinctiveness, resulting in large reductions in functional richness and dispersion after their loss, which implies important consequences for ecosystem integrity. Conservation efforts aimed at maintaining ecosystem function must move beyond seeking to sustain species numbers to designing complementary strategies for the maintenance of ecological function by identifying and conserving species with traits conferring high vulnerability such as large body size, poor dispersal ability, and greater habitat specialization. Article impact statement: Changes in functional fingerprints provide a means to quantify the integrity of ecological assemblages affected by diversity loss or gain.  相似文献   
8.
叶片的有机组分特征不仅是植物光合产物分配策略和养分回收的重要参数,而且是衡量凋落叶分解难易程度的重要指标.为探究不同植物群落叶片间有机组分的差异,以华西雨屏区人工林的优势乔、灌、草植物作为对象,收集其成熟叶及凋落叶,研究其水溶性组分(water soluble component,WSC)、有机溶性组分(organic solvent soluble component,OSC)、酸溶性组分(acid-soluble extractive,ASE)和酸不溶性组分(acid-insoluble residue,AIR)含量特征.结果显示:植物叶片整体的WSC、OSC、ASE和AIR的平均相对含量为分别为25.05%、6.56%、34.30%和35.05%,表现为AIR> ASE> WSC> OSC.成熟叶和凋落叶同种组分的相对含量存在差异,成熟叶中ASE的相对含量(36.34%)最高,凋落叶中AIR含量(39.63%)最高.乔、灌、草层植物成熟叶的WSC、OSC、ASE的相对含量高于凋落叶,而AIR的相对含量低于凋落叶,其中WSC的相对含量在成熟叶和凋落叶间差异显著.不同植物功能群的同一组分间存在差异,木本植物WSC、ASE的相对含量低于草本植物,而OSC、AIR的相对含量高于草本植物.因此,植物叶片的有机组分特征不仅受到叶类型的影响,也受到不同植物功能群的影响;结果可为理解亚热带人工林植物的养分利用效率和凋落物分解机制提供重要理论依据.(图5表1参50)  相似文献   
9.
为有效克服FRAM事故分析中无法进行定量分析的缺陷,提出结合模糊推理技术的Fuzzy FRAM模型。此改进模型基于FRAM识别系统运行状态;依据功能输出要素的时间/精度属性利用Matlab构建2阶模糊推理系统量化功能输出质量;根据通用性能条件(CPC)及功能输入耦合端口构建功能评价体系,针对评价体系中存在的不确定性信息融合及建模问题,采用模糊证据推理技术,通过模糊信度结构建立、数据处理、信息融合测度后获得功能的风险指数;以既有铁路危险品运输事故为例,验证方法的可行性。结果表明:Fuzzy FRAM模型的评估结果较为精确,是FRAM分析方法的有效补充。  相似文献   
10.
Scientific insights into what it means to manage on-farm trees by local farmers, is an essential step towards documenting local ecological knowledge for sustainable landscape management. A study was therefore conducted in the Kumawu Forest District in the Ashanti Region of Ghana to assess how farmers conceptualise on-farm tree management and develop local knowledge for it. Using a case study approach, data were collected through informal interviews and focus group discussions with 120 farmers drawn from 15 communities who were involved in the management of three cropping systems; cocoa, maize and cassava-cocoyam-plantain mix. It was observed that the farmers regard on-farm tree management as a continuous process which occurs in three phases of the farming cycle; land preparation, crop cultivation and fallow management. For each of the three phases, farmers are guided by specific principles that ensure enough light penetration in-between tree crowns in the land preparation phase, suitable spacing between trees and crops in the crop cultivation phase and adequate tree regeneration in the fallow phase. The decisions made during the selection of tree species, spacing of trees adjudged suitable for any particular cropping system and recruitment of saplings prior to the fallow phase of farming constitute tree management. Farmers develop tree management knowledge by studying the physical characteristics of species, matching them to ecological functions they could perform and how they are likely to respond to treatments meant to control or enhance their development. Species are then subjected to trial and recommended or otherwise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号