首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2671篇
  免费   240篇
  国内免费   592篇
安全科学   288篇
废物处理   72篇
环保管理   958篇
综合类   1012篇
基础理论   463篇
污染及防治   476篇
评价与监测   127篇
社会与环境   68篇
灾害及防治   39篇
  2023年   48篇
  2022年   73篇
  2021年   90篇
  2020年   91篇
  2019年   95篇
  2018年   73篇
  2017年   98篇
  2016年   113篇
  2015年   132篇
  2014年   128篇
  2013年   184篇
  2012年   156篇
  2011年   203篇
  2010年   126篇
  2009年   223篇
  2008年   146篇
  2007年   168篇
  2006年   152篇
  2005年   138篇
  2004年   128篇
  2003年   107篇
  2002年   97篇
  2001年   106篇
  2000年   100篇
  1999年   75篇
  1998年   72篇
  1997年   45篇
  1996年   49篇
  1995年   30篇
  1994年   23篇
  1993年   21篇
  1992年   22篇
  1991年   13篇
  1990年   13篇
  1989年   16篇
  1988年   11篇
  1987年   14篇
  1986年   7篇
  1985年   13篇
  1984年   7篇
  1983年   5篇
  1982年   13篇
  1981年   14篇
  1980年   16篇
  1979年   19篇
  1978年   13篇
  1977年   4篇
  1974年   2篇
  1972年   3篇
  1970年   2篇
排序方式: 共有3503条查询结果,搜索用时 15 毫秒
1.
Understanding complex systems is essential to ensure their conservation and effective management. Models commonly support understanding of complex ecological systems and, by extension, their conservation. Modeling, however, is largely a social process constrained by individuals’ mental models (i.e., a small-scale internal model of how a part of the world works based on knowledge, experience, values, beliefs, and assumptions) and system complexity. To account for both system complexity and the diversity of knowledge of complex systems, we devised a novel way to develop a shared qualitative complex system model. We disaggregated a system (carbonate coral reefs) into smaller subsystem modules that each represented a functioning unit, about which an individual is likely to have more comprehensive knowledge. This modular approach allowed us to elicit an individual mental model of a defined subsystem for which the individuals had a higher level of confidence in their knowledge of the relationships between variables. The challenge then was to bring these subsystem models together to form a complete, shared model of the entire system, which we attempted through 4 phases: develop the system framework and subsystem modules; develop the individual mental model elicitation methods; elicit the mental models; and identify and isolate differences for exploration and identify similarities to cocreate a shared qualitative model. The shared qualitative model provides opportunities to develop a quantitative model to understand and predict complex system change.  相似文献   
2.
2016—2017年武汉市城区大气PM2.5污染特征及来源解析   总被引:1,自引:0,他引:1  
利用2016年1月至2017年9月湖北省环境监测中心站大气复合污染自动监测站的在线监测数据,对武汉市城区PM2.5的污染特征及主要来源进行解析。结果表明,武汉市城区PM2.5质量浓度呈现出明显的季节差异,季节变化规律为冬季>春季>秋季>夏季。水溶性离子的主要成分SO42-、NO3-和NH4+占总离子质量浓度的82.0%。PM2.5中阴离子相对阳离子较为亏损,颗粒整体呈碱性。夏季气态污染物的氧化程度较高且SO2较NO2氧化程度高。后向轨迹分析结果表明,区域传输是武汉市PM2.5的一个重要来源,在4个典型重污染阶段,武汉市分别受到局地、东北、西北及西南方向气团传输的影响。PMF模型解析出武汉市PM2.5五大主要来源及平均贡献率:扬尘22.0%、机动车排放27.7%、二次气溶胶21.6%、重油燃烧14.9%和生物质燃烧13.8%。  相似文献   
3.
Private lands provide key habitat for imperiled species and are core components of function protectected area networks; yet, their incorporation into national and regional conservation planning has been challenging. Identifying locations where private landowners are likely to participate in conservation initiatives can help avoid conflict and clarify trade-offs between ecological benefits and sociopolitical costs. Empirical, spatially explicit assessment of the factors associated with conservation on private land is an emerging tool for identifying future conservation opportunities. However, most data on private land conservation are voluntarily reported and incomplete, which complicates these assessments. We used a novel application of occupancy models to analyze the occurrence of conservation easements on private land. We compared multiple formulations of occupancy models with a logistic regression model to predict the locations of conservation easements based on a spatially explicit social–ecological systems framework. We combined a simulation experiment with a case study of easement data in Idaho and Montana (United States) to illustrate the utility of the occupancy framework for modeling conservation on private land. Occupancy models that explicitly accounted for variation in reporting produced estimates of predictors that were substantially less biased than estimates produced by logistic regression under all simulated conditions. Occupancy models produced estimates for the 6 predictors we evaluated in our case study that were larger in magnitude, but less certain than those produced by logistic regression. These results suggest that occupancy models result in qualitatively different inferences regarding the effects of predictors on conservation easement occurrence than logistic regression and highlight the importance of integrating variable and incomplete reporting of participation in empirical analysis of conservation initiatives. Failure to do so can lead to emphasizing the wrong social, institutional, and environmental factors that enable conservation and underestimating conservation opportunities in landscapes where social norms or institutional constraints inhibit reporting.  相似文献   
4.
Biohythane production via single-stage anaerobic digestion (AD) is an effective way for sustainable energy recovery from lignocellulosic biomass. In this paper, biohythane was produced through the AD process from pineapple peel waste substrate using purely cultured Methanosarcina mazei with the enhancement of palm oil mill effluent (POME) sludge as the inoculum. This study focuses on the effects of the lignocellulosic pre-treatment method, the addition of POME sludge into M. mazei culture medium as inoculum, and various operational conditions (food to microorganisms (F/M) ratios, temperature, pH) on gas production performances. The experimental results indicate that these parameters influenced the efficiency of biohythane production by producing the peak maximum biohythane production rate values (HPRmax) and (MPRmax), H2:CH4 = 1.93:0.67 L/L-d, and biohythane yield (HY) and (MY), H2:CH4 = 1.18:0.55 mL/L-substrate. This study demonstrates that biohythane gas (H2 + CH4 + CO2) production from pineapple waste can be accelerated by M. mazei only with the enhancement of POME sludge through single-stage AD system under mesophilic batch process conditions.  相似文献   
5.
A nutrient loss reduction strategy is necessary to guide the efforts of improving water quality downstream of an agricultural watershed. In this study, the effectiveness of two winter cover crops, namely cereal rye and annual ryegrass, is explored as a loss reduction strategy in a watershed that ultimately drains into a water supply reservoir. Using a coupled optimization-watershed model, optimal placements of the cover crops were identified that would result in the tradeoffs between nitrate-N losses reduction and adoption levels. Analysis of the 10%, 25%, 50%, and 75% adoption levels extracted from the optimal tradeoffs showed that the cover crop placements would provide annual nitrate-N loss reductions of 3.0%–3.7%, 7.8%–8.8%, 15%–17.5%, and 20.9%–24.3%, respectively. In addition, for the same adoption levels (i.e., 10%–75%), sediment (1.8%–17.7%), and total phosphorus losses (0.8%–8.6%) could be achieved. Results also indicate that implementing each cover crop on all croplands of the watershed could cause annual water yield reduction of at least 4.8%, with greater than 28% in the months of October and November. This could potentially be detrimental to the storage volume of the downstream reservoir, especially in drought years, if cover crops are adopted in most of the reservoir's drainage area. Evaluating water yield impacts, particularly in periods of low flows, is thus critical if cover crops are to be considered as best management practices in water supply watersheds.  相似文献   
6.
Interpersonal trust is associated with a range of adaptive outcomes, including knowledge sharing. However, to date, our knowledge of antecedents and consequences of employees feeling trusted by supervisors in organizations remains limited. On the basis of a multisource, multiwave field study among 956 employees from 5 Norwegian organizations, we examined the predictive roles of perceived mastery climate and employee felt trust for employees' knowledge sharing. Drawing on the achievement goal theory, we develop and test a model to demonstrate that when employees perceive a mastery climate, they are more likely to feel trusted by their supervisors at both the individual and group levels. Moreover, the relationship between employees' perceptions of a mastery climate and supervisor‐rated knowledge sharing is mediated by perceptions of being trusted by the supervisor. Theoretical contributions and practical implications of our findings are discussed.  相似文献   
7.
在阐述了宁夏地区光伏发电发展的优势及发展现状的基础上,分析了光伏发电开发利用对宁夏生态环境产生的积极和消极的影响,并为降低消极影响提出了相应的对策;为了定量直观的评估光伏发电积极影响和消极影响所产生的环境效益,分别建立了节能减排、防风固沙和土地增值、景观效应、植被恢复费用、噪声污染超标罚款、光污染费用等价值模型及光伏发电总的生态环境效益价值模型;最后以中电投宁夏能源铝中卫香山光伏电站为例进行计算验证,结果表明模型的合理性和准确性,同时光伏电站的节能减排效益显著。相对于传统的火力发电,表现了优越的环境效益。  相似文献   
8.
The effects of an arbuscular mycorrhizal fungi (AMF) association on the growth, survival capabilities, nutrients and lead (Pb) uptake of Miscanthus sacchariflorus under different Pb concentrations were studied in the form of pot cultures. The treatments comprised inoculation or non-inoculation of the AMF, Gigaspora margarita, and the addition of three Pb concentrations to the soil (0, 100 and 1000?mg?kg?1). The addition of Pb significantly decreased mycorrhizal colonisation. The inoculation of AMF with Pb increased chlorophyll content, Fv/Fm, total dry mass, indole-3-acetic acid (IAA), total nitrogen, and total phosphorus, whereas H2O2 level, indole-3-acetic acid oxidase (IAAO) activity, and peroxidase (POD) activity were low compared to those in the non-inoculated treatments. Moreover, the application of AMF together with Pb doses induces concentrations of Pb in the plant, where the higher dose of Pb (1000?mg?kg?1) induces a lower content of Pb in the aerial part of the plant but a higher content in the root. G. margarita enhanced the tolerance of M. sacchariflorus against Pb toxicity, and facilitated the accumulation of Pb in the plant roots, whereas translocation to the shoots was inhibited at the highest dose Pb (1000?mg?kg?1). However, in contaminated soil, the Pb removal capability of M. sacchariflorus with AMF was remarkable.  相似文献   
9.
Species, habitats, and ecosystems are increasingly exposed to multiple anthropogenic stressors, fueling a rapidly expanding research program to understand the cumulative impacts of these environmental modifications. Since the 1970s, a growing set of methods has been developed through two parallel, sometimes connected, streams of research within the applied and academic realms to assess cumulative effects. Past reviews of cumulative effects assessment (CEA) methods focused on approaches used by practitioners. Academic research has developed several distinct and novel approaches to conducting CEA. Understanding the suite of methods that exist will help practitioners and academics better address various ecological foci (physiological responses, population impacts, ecosystem impacts) and ecological complexities (synergistic effects, impacts across space and time). We reviewed 6 categories of methods (experimental, meta-analysis, single-species modeling, mapping, qualitative modeling, and multispecies modeling) and examined the ability of those methods to address different levels of complexity. We focused on research gaps and emerging priorities. We found that no single method assessed impacts across the 4 ecological foci and 6 ecological complexities considered. We propose that methods can be used in combination to improve understanding such that multimodel inference can provide a suite of comparable outputs, mapping methods can help prioritize localized models or experimental gaps, and future experiments can be paired from the outset with models they will inform.  相似文献   
10.
Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号