首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   3篇
  国内免费   1篇
环保管理   1篇
综合类   4篇
基础理论   1篇
评价与监测   1篇
  2024年   1篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
为探究德州市采暖季环境空气中含氮/硫物质的污染特征、气-粒分配规律及影响因素,对2017年11月10日—2018年3月15日德州市市区环境空气监测站在线离子色谱分析仪监测的水溶性离子及气态前体物质量浓度的小时数据进行了分析.结果表明:①德州市环境空气监测站ρ(NO3-)、ρ(SO42-)和ρ(NH4+)平均值分别为(18.36±18.55)(12.74±10.92)(9.60±8.75)μg/m3,在2018年1月三者均达到最高值;对比PM2.5及气态含氮/硫物质的质量浓度发现,ρ(PM2.5)和ρ(SO2)在2017年12月、2018年1月和2018年2月的月均值均较高,而ρ(SO2)与ρ(SO42-)、ρ(NH3)与ρ(NH4+)均在日间(08:00—17:00)出现波峰.②对颗粒态和气态含氮/硫物质质量浓度日均值进行双变量相关分析发现,ρ(SO42-)、ρ(NO3-)、ρ(NH4+)两两之间的相关系数均高于0.75,表明二次离子的形成机制相似;而ρ(NH3)、ρ(NO2)、ρ(NO)、ρ(SO2)两两之间均不存在显著相关,说明这些气态前体物来自不同的局部排放源.③过剩NH3指数(FN)平均值为0.49±0.16,说明采样时段大气处于富氨环境,过剩的NH3会与气态HNO3生成NH4NO3,因此NO3-气溶胶的形成主要受HNO3的影响或限制.④相对湿度是影响ρ(PM2.5)最重要的气象因素,高湿环境会促进二次离子的转化.研究显示,冬季采暖排放会增加环境空气中含氮/硫物质的质量浓度,气象因素(尤其是相对湿度)对含氮/硫物质的气-粒分配也有一定影响.   相似文献   
2.
张淼  丁椿  李彦  王桂霞  林晶晶  孟赫  许杨 《环境科学》2021,42(12):5723-5735
为认识山东省环境空气中O3的污染现状,基于2015~2019年国省控环境空气自动监测站的O3监测数据、2019~2020年4~9月气象代表站的气象数据及邻近环境空气站的O3监测数据,探究了山东省O3时空分布特征及与气象因素的关系.结果表明,山东省O3污染日益突出,年均ρ(O3-8h)(90百分位)和ρ(Ox)(O3 与NO2之和)升高速率分别为7.6μg·(m3·a)-1和7.0μg·(m3·a)-1,年均ρ(PM2.5)、ρ(CO)(95百分位数)和ρ(NO2)均逐步下降,下降速率均小于ρ(O3)上升速率.03污染呈现夏季高冬季低的"M型"或"倒V型"月变化特征,在6月或9月达到峰值,且污染月呈提前出现趋势.山东省年均ρ(O3-8h)(90百分位)呈现"内陆高,沿海低"的特点,并有区域均匀性发展趋势.相关性分析表明,山东省ρ(O3-8h)总体与日最高温度呈正相关,与相对湿度、气压和风速呈负相关,其中日 最高温度和相对湿度是O3-8h主控气象因子,气象因素对不同城市O3-8h超标率的影响具有显著差异.  相似文献   
3.
山东省PM2.5-O3复合污染特征突出,空间差异性明显,本文基于2016—2020年国控和省控环境空气自动监测站监测数据以及同期各气象代表站气象监测数据,分析PM2.5和O3时空分布的变化特征,初步探究其与气象因子及前体物的关系. 结果表明:①2016—2020年山东省空气质量逐步改善,优良天数比例上升了7.1%,重污染天数比例下降了3.5%. 除O3年评价值上升9.6%以外,SO2、PM10、PM2.5、CO和NO2的浓度均下降,降幅依次为61.3%、29.8%、28.6%、26.3%和11.4%. 各市PM2.5年评价值均下降(范围为18.4%~34.9%);除德州市外,其他15市O3年评价值均上升,滨州市的升幅(30.8%)最大. 1月PM2.5平均浓度最高,呈现先下降后上升的年变化趋势,6月O3平均浓度最高,且逐年上升. ②山东省PM2.5和O3均呈现内陆地区高于沿海地区的分布特征,PM2.5浓度在西部内陆地区较高,O3浓度在中北部内陆地区较高,PM2.5-O3复合污染特征在中西部地区较明显. 统计期间共计出现PM2.5-O3复合污染日224 d,分布在2—11月,出现天数逐年减少. ③为探究PM2.5-O3复合污染的影响因素及气象特征,进行相关性分析及气象因子阈值筛查,结果表明,PM2.5日均浓度和O3_8 h (臭氧日最大8小时滑动平均值)与其主要前体物和气象因子均呈现相反的相关关系,且对不同因子的响应有一定区域性差异. 当气温为14.9~24.1 ℃、相对湿度为55.5%~75.1%、风速为0.6~2.9 m/s、气压为992.8~1 018.8 hPa时PM2.5-O3复合污染易于发生,该条件下大部分城市的气温、相对湿度和气压平均值介于PM2.5和O3污染单独发生时的对应因子平均值,但平均风速小于PM2.5和O3污染单独发生的平均风速. 研究显示,“十三五”期间山东省PM2.5浓度波动下降,O3浓度波动上升,二者的协同关系日趋明显,气象因素对PM2.5和O3的生成和累积有一定影响.   相似文献   
4.
对2019—2022年山东省16个市的细颗粒物(PM2.5 )污染特征进行了分析,并对2021和2022年的4个数值模式[社区多尺度空气质量模拟系统(CMAQ)、扩展综合空气质量模型(CAMx)、区域气象-大气化学在线耦合模式(WRF-Chem)、嵌套网格空气质量预报系统(NAQPMS)]及集合预报模式预测的效果进行评估。结果表明:2019—2022年山东省PM2.5 年均质量浓度逐年降低,污染程度逐步减轻,但在1—3,11—12月,PM2.5 质量浓度超标现象较为普遍。2021年底更换污染源清单后,2022年5个模式的24 h级别准确率和相关系数(r)同比升高,均方根误差(RMSE)同比降低,模式预报准确率有所提升,但由于参数调整略大,CMAQ、CAMx、WRF Chem、集合预报模式易漏报或偏轻预报PM2.5 的中度污染和重度污染天气。由于NAQPMS模式在更换污染源排放清单时,同时改进了非均相化学反应机制,因此对PM2.5 不同污染类别尤其是中度污染、重度污染的预报准确率明显提升。  相似文献   
5.
为准确评估济南市夏季环境空气中PBDEs(多溴联苯醚)的污染情况,利用气相色谱-负化学离子源-质谱(GC-NCI-MS)方法,对采集到的大气颗粒物滤膜和气相样品进行了分析,得到不同粒径颗粒相和气相PBDEs在济南市夏季环境空气中的质量浓度.结果表明:观测期间,济南市环境空气中TSP(总悬浮颗粒物)、PM10和PM2.5中的ρ(PBDEs)分别为(224.1±14.0)(156.5±43.7)(110.2±27.4)pg/m3,质量浓度较高的3种PBDEs单体分别为BDE209、BDE99、BDE183;气相中ρ(PBDEs)为(54.8±13.2)pg/m3,其中,质量浓度较高的单体分别为BDE209、BDE47、BDE99.通过主因子分析发现,不同粒径颗粒物上吸附的PBDEs特征单体不同,TSP中以五溴联苯醚为主,PM10中以八溴联苯醚和五溴联苯醚为主,PM2.5中则以五溴联苯醚、八溴联苯醚、十溴联苯醚为主.通过将2种模型的预测值和实测值进行比较发现,稳衡态模型比KOA(辛醇-空气分配系数)模型更好地模拟了PBDEs的气-粒分配情况.在稳衡态模型下,PBDEs在气-粒分配中接近于平衡状态.高溴代PBDEs主要分布于颗粒相中,而低溴代PBDEs的真实情况不同于理论预测结果,BDE99及BDE47在颗粒相的分配比高于50%,说明济南市低溴代PBDEs也容易吸附在颗粒相中.根据计算的PBDEs呼吸暴露水平可知,PM2.5上PBDEs呼吸暴露量占TSP呼吸暴露量的49.1%,儿童约是成人的1.5倍.济南市普通儿童和成人对BDE99最高总摄入量分别为234.78和169.57 pg/(kg·d),均低于BDE99最大允许摄入量260 pg/(kg·d).根据US EPA(美国环境保护局)发布的PBDEs健康风险评价方法(EPA/540/R/070/002),利用国内外相关参数分别计算空气吸入致癌风险指数发现,济南市夏季环境空气中PBDEs的致癌风险处于较低水平.研究显示,济南市夏季环境空气中不同粒径颗粒物PBDEs的质量浓度处于较低污染水平,其产生的潜在健康风险也较低.   相似文献   
6.
为探究济南市采暖季环境空气中PM_(2.5)中碳组分的污染情况及主要来源,于2017年11月16日-2018年3月31日和2017年11月16日-28日分别进行了居住区和背景区离线颗粒物采样,运用美国沙漠研究所DRIModel2015多波长热/光学碳分析仪对大气PM_(2.5)中碳组分进行了分析。研究结果显示,日均质量浓度ρ(OC)、ρ(EC)和ρ(PM_(2.5))在居住区为9.26、3.16、85.32μg·m~(-3),在背景区为2.88、1.44、59.27μg·m~(-3),说明居住区碳组分污染程度明显高于背景区。居住区日均质量浓度最高的碳组分为OC4、OC3和EC2;OC3和OC4日均质量浓度随污染等级从优向重度污染变化的过程逐渐增大,且OC日均质量浓度的变化情况跟OC3和OC4日均质量浓度变化相一致。但OC/PM_(2.5)和EC/PM_(2.5)均随污染等级的加重而呈下降趋势,可见OC和EC并不是济南采暖季重污染天气的控制因子。PMF来源解析结果显示,济南市采暖季居住区碳组分贡献较大的源为燃煤源、汽油车尾气和道路尘。结合碳组分在线监测仪器(美国SUNSET公司,型号RT-4)同期OC和EC质量浓度数据,采用Cabada改进后的方法,计算出SOC和POC质量浓度分别为1.14μg·m~(-3)和4.69μg·m~(-3)对采样时间段内一次典型重污染过程进行分析,发现CO、EC、POC等一次污染物的大量排放、不利的气象因素、区域传输等因素共同导致了此次污染过程的的形成。  相似文献   
7.
为研究山东省冬季重污染天气成因,以2020年1月一次典型重污染天气过程为例,基于各类环境空气监测数据和气象监测数据,深入分析污染演变过程、气象条件特征、组分变化特点等。结果表明,静稳高湿的气象条件是污染过程形成的主要气象原因,各市PM2.5浓度与风速和大气边界层高度均呈显著负相关,但与相对湿度的相关性呈现海陆差异,内陆城市与相对湿度的相关性明显强于沿海城市,因此秋冬季时需准确识别山东省各区域的不利气象条件,并进行针对性预报。在不利气象条件影响下,一次颗粒物不断累积,SO2、NOx等气态前体物向硫酸盐、硝酸盐的二次转化均是推高PM2.5浓度的重要原因,建议在PM2.5污染期间除管控一次颗粒物排放外,也应加强无机组分前体物SO2、NOX排放源的管控。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号