首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   3篇
  国内免费   8篇
安全科学   1篇
综合类   11篇
基础理论   3篇
污染及防治   3篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2010年   2篇
  2005年   2篇
  1981年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
某危险废物填埋场地下水污染预测及控制模拟   总被引:8,自引:2,他引:6  
以某危险废物填埋场为研究对象,在收集其水文地质资料基础上,运用Visual Modflow建立填埋场地下水水流和溶质运移耦合模型,对填埋场防渗层发生渗漏后,渗滤液中Cr6+在地下水中的运移过程以及地面硬化、防渗墙和排水沟3种污染控制措施对污染羽阻隔效果进行模拟预测.结果表明,Cr6+随地下水流方向运移形成污染羽,10 a后污染羽到达水塘边界,运移距离约为1 450 m,但随后10~20 a之间污染羽扩散范围没有明显扩大;地表硬化后,20 a内污染羽未扩散至水塘边界;防渗墙设置到上层含水层底部时,监测井Cr6+浓度高于未设置防渗墙时浓度,设置到下层含水层底部时,Cr6+浓度与设置于上层含水层时监测结果相反;排水沟日排水量达到2 642 m3时能有效控制污染羽扩散,20 a后污染羽尚未污染监测井;地表硬化与排水沟组合控制污染物扩散,效果最佳,同时排水沟日排水量可减少为1 878 m3.因此,当填埋场发生渗漏时,建议采用设置排水沟与周边地表硬化组合的地下水污染控制措施.  相似文献   
2.
为预测评估过硫酸盐缓释材料的释放性能,对释放过程模型的构建以及模型的验证进行了研究。借助微积分思想,从材料体的概化分割、初始条件设定、每个小单元的状态标定、各个小单元中过硫酸钾的迁移变化量以及材料最外层释放过硫酸盐的量5个方面构建过硫酸盐缓释材料释放模型,利用Excel-VBA编程实现其释放过程模拟。采用欧盟标准NEN7375测试过硫酸盐缓释材料释放性能并获得模型参数。通过输入相关模型参数得到过硫酸盐动态迁移过程及其释放特征曲线,并利用实测数据与模拟数据进行拟合校验。结果表明,模型模拟值与实测值拟合较好,平均误差为1.88%,表明该模型设计合理,能够准确模拟过硫酸盐缓释材料释放过程,可作为缓释材料优化设计工具。  相似文献   
3.
为解决地下水污染修复技术中PT(抽出处理)和PRB(渗透性反应墙)存在的一些不足,搭建了MET(多级强化地下水修复技术)小试装置,以NH4+-N为目标污染物,研究MET对地下水中NH4+-N的去除效果及机制.结果表明,在进水水力负荷为14.68 m3/(m2·d)、ρ(NH4+-N)为25.0 mg/L的条件下,装置连续运行45 d,NH4+-N去除率呈先降后升、平稳后再下降的趋势,平均值达90%以上.出水ρ(NH4+-N)平均值为2.0 mg/L,其中,硝化作用和微生物同化作用使ρ(NH4+-N)平均下降13.9和5.2mg/L,分别占进水ρ(NH4+-N)的54%和20%;植物作用、基质永久吸附作用和挥发作用分别使ρ(NH4+-N)下降2.9、0.7和0.7mg/L,占进水ρ(NH4+-N)的12%、3%和3%.综上,MET对地下水中NH4+-N的去除率可达90%,实现了高效去除NH4+-N的目标.  相似文献   
4.
水位波动带氮素迁移转化规律   总被引:1,自引:0,他引:1  
为考察水位波动对非饱和-饱和土层中氮素迁移转化的影响,设计土柱实验装置Ⅰ和Ⅱ分别模拟水位稳定与波动两种情景,测定一个水位波动周期内地下水中NO3--N、NO2--N和NH4+-N浓度变化情况。结果表明,柱Ⅱ水位第1次下降柱内1#,2#,3#,4#采样点NO3--N浓度均增大,增幅分别为6.5%、14.9%、15.33%和19.8%。水位上升时结果相反,分别降低17.3%、26.15%、50.29%和44.61%。第2次水位下降至初始位置4个采样点NO3--N浓度再次增大,幅度分别为7.1%、10.6%、13.89%和7.76%。铵态氮呈相反趋势不同程度的变化。水位波动柱Ⅱ连通水槽内总氮量增加显著高于柱I水槽,即水位波动有利于波动带地下水中氮素垂向迁移,加重波动带以下地下水硝酸盐污染。因此,水位波动对氮素迁移转化的影响不容忽视。  相似文献   
5.
基于MCDA模型的危险废物填埋场地下水污染风险分级   总被引:1,自引:0,他引:1       下载免费PDF全文
基于对风险全过程控制的思想,利用层次分析法,构建了综合考虑危险废物填埋场自身属性、污染场地水文地质条件以及污染受体等因素的危险废物填埋场地下水污染风险分级指标体系,该体系共包括14项指标;并采用MCDA(multi-criteria decision analysis,多准则决策分析)模型,对我国37个危险废物填埋场(不包括港澳台数据,下同)地下水污染风险进行了分级研究. 结果表明:14项风险分级指标之间具有很好的独立性,指标体系能够较为完整、准确地反映危险废物填埋场对地下水的污染风险程度;37个危险废物填埋场地下水污染风险可分为高、中、低3个级别,其中81%处于中、低级风险级别;地下水中特征污染物ρ(Cr)监测值与风险分级分值的距平指数为0.802 9,验证了风险分级结果的可靠性;同时采用MDCA模型对风险分级指标权重的敏感性进行分析,验证了风险分级过程中指标权重赋值的准确性,并降低了指标权重赋值过程中的不确定性,进一步提高了分级结果的可靠性.风险分级结果在一定程度上可为危险废物填埋场地下水污染风险管理提供依据.   相似文献   
6.
乙酰丙酮能同铝生成无色稳定的螯合物,可以用它作为解蔽剂直接测定水中氟。乙酰丙酮不仅能解蔽同铝生成络合阴离子的氟,而且在镧—茜素络合酮(以下简记ALC)光度法中,可以有效地抑制同铝及铁生成ALC螯合物所产生的正、负误差。另外,对采用氟离子选择性电极的电位差也是有用的。采样后,调节pH至12,经数小时后,如果要对上面的澄清试液进行定量,对于一般的水溶液,不用分离即可直接定量水中的氟。  相似文献   
7.
生活垃圾填埋场地下水污染风险分级方法研究   总被引:4,自引:0,他引:4  
在综合分析国内外不同行业、不同领域风险分级方法的基础上,初步建立了一种生活垃圾填埋场地下水污染风险分级方法。该方法利用由美国环保局(USEPA)开发的多介质、多路径、多受体风险评价模型(3MRA)中用于描述污染物在地下水迁移的EPACMTP模型和风险评估模型计算生活垃圾填埋场地下水污染风险指数I,利用地下水含水层脆弱性模型(DRASTIC模型)计算地下水含水层脆弱性指数DRASTIC。并以I和DRASTIC为风险分级指标,以MATLAB聚类分析为方法,对生活垃圾填埋场地下水污染风险进行分级。以北京市22个生活垃圾填埋场为例,利用建立的风险分级方法,可将这22个填埋场地下水污染风险从高到低分为4级,并且大部分填埋场属于风险级别较低的3、4级。表明该风险分级方法可行、有效,在一定程度上可以为生活垃圾填埋场地下水污染的风险管理提供依据。  相似文献   
8.
寒冷地区煤炭运输设备上煤的冻黏严重影响煤炭运输的安全与效率,为分析各地不同煤样的冻黏强度特性及原因,选取各地5个存在冻黏现象煤矿的煤样,测试其在Q235和UHMWPE材料上的冻黏强度,并检测5种煤样的外在水质量分数、粒度和孔容分布,结果表明:在亲水性Q235材料上,内蒙古锡林浩特煤样冻黏强度最高(2.58 MPa),其次是辽宁铁法煤样(2.02 MPa)和黑龙江双鸭山煤样(1.36 MPa),北京大安山(0.773 MPa)和木城涧煤样(0.689 MPa)较低;不同煤样在疏水性UHMWPE材料上的冻黏强度分布在0.159~0.230 MPa。各煤样因煤质、采掘破碎工况、煤化程度等因素导致其粒度和孔容分布不同,使各自外在水质量分数不同,进而导致煤样在亲水性Q235材料上冻黏强度差别明显,外在水质量分数高的煤样冻黏强度相对较高;在UHMWPE材料上,各煤样的冻黏强度因材料的疏水性而对外在水质量分数差异不敏感,因而普遍很低且差别很小,可见采用UHMWPE基体材料对各地煤在运输设备上的冻黏具有一定防治作用。  相似文献   
9.
同在一片欧洲文明的沃土上,希腊和德国这两个同属高度发达的国家却滋生出截然不同的两种垃圾文化观。  相似文献   
10.
土壤颗粒级配对镉吸附-解吸规律的影响   总被引:2,自引:0,他引:2  
利用甘肃金川某地土壤通过批实验进行等温吸附和动力学解吸实验,研究不同颗粒级配的中砂对镉的吸附、解吸特征,并采用Freundlich和一级动力学方程对其吸附解吸方程进行拟合。结果表明,(1)Freundlich和一级动力学方程对该土壤吸附、解吸镉的实验适用;(2)等温吸附实验中4组不同颗粒级配的中砂对镉的吸附性很强,最大平衡吸附量依次为260.667、286.107、299.362和292.232 mg/kg,吸附性能与颗粒级配中的细粒土相对含量大小成正比;(3)4组土壤对镉的解吸在初期2 h内解吸速率均较快,在3 h左右达到吸附-解吸平衡。平衡后4组土样Ⅰ、Ⅱ、Ⅲ和Ⅳ的最大解吸量依次为0.752、0.561、0.44和0.54 mg/kg,解吸速率和平衡时最大解吸量均与颗粒级配中细颗粒相对含量密切相关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号