首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
综合类   2篇
基础理论   1篇
  2023年   1篇
  2018年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
为研究太原市城区PM_(2.5)浓度不同时间尺度的演变特征及其与气象要素之间的关系,基于PM_(2.5)监测浓度、气象观测数据和再分析资料,利用小波功率谱和交叉小波方法分析了2014年1月1日—2016年5月31日太原市PM_(2.5)的周期变化,及其同气象要素的协同关系,同时研究了对应时段的太原市PM_(2.5)与天气形势的相关关系。结果表明,太原市PM_(2.5)浓度变化存在2~8 d和10~16 d的显著周期,与2 m相对湿度、混合层高度、近地面逆温强度和10 m风速具有相似的共振变化,显著时段主要在每年9月份左右至次年3月份。特定的天气形势是太原市冬季PM_(2.5)持续偏高的背景因素之一,特定的天气形势下PM_(2.5)与同期的气象要素存在密切的协同关系。在研究时段内,太原市PM_(2.5)浓度与华北地区海平面气压呈负相关关系,与朝鲜半岛、日本海的海平面气压呈正相关关系,与500 hPa高度场相关性最显著的区域主要分布在中国华北、东北以及朝鲜半岛,主要表现为正相关关系。研究时段内,中国东部上空500 hPa高度场异常偏高,海平面气压偏低,近地面风速减弱等不利于污染物扩散的形势是造成太原市冬季PM_(2.5)浓度持续偏高的背景因素之一。研究结果有利于从不同时间尺度了解太原市PM_(2.5)的变化规律及气象影响因素,对太原市大气污染防治,重污染预报预警工作具有较大的意义。  相似文献   
2.
为提高太原市PM2.5预报准确率,更好地服务于空气质量预报预警工作,在华北区域BREMPS(环境气象数值预报系统)预报结果的基础上,结合MR(多元线性回归)、BP(BP神经网络)和MLR(多层递阶)建立10 d的滚动修正模型,并对太原市2017年1月15日—4月15日ρ(PM2.5)进行了修正.结果表明:3种修正模型对BREMPS预报的ρ(PM2.5)小时值和日均值均有不同程度的改善,尤其是MLR修正结果在多项评价指标上明显优于MR和BP,其小时值的RMSE(均方根误差)由原来的42.46 μg/m3降至26.74 μg/m3,重污染和非重污染时段日均值的RMSE分别由未修正前的63.78、43.68 μg/m3降至28.52、21.27 μg/m3,日均值修正结果的基础评分从0.65升至0.88,预报准确率由原来的66.18%升至86.74%.从3种修正模型的构建来看,MR和BP方法对系统平稳状态的修正具有一定的优势,而对系统大幅变化的识别能力较弱,所以在天气变化时临界状态的修正结果误差较大,模型的稳定性较差.研究显示,MLR方法本身具有一定的自适应能力,稳定性和修正结果的整体趋势明显优于MR和BP方法,对太原市空气质量预报改进、重污染天气预警和大气污染防治等方面具有较大的应用价值.   相似文献   
3.
利用2016~2020年太原市污染物浓度资料、以及国家基准气象观测站的同期地面气象资料,重点分析了太原市PM2.5浓度的变化特征以及湿度、降水、风和混合层厚度等气象条件对PM2.5浓度的影响,同时探讨了污染物浓度变化的成因,建立基于LSTM神经网络的PM2.5浓度预报模型.结果表明,2016~2020年太原市区冬季出现的重污染天数最多,其中2017年冬季出现天数最多为28 d, PM2.5浓度总体呈现出秋冬季节高,春夏季节低,周末PM2.5浓度高于工作日浓度,PM2.5浓度日变化大致呈现双峰型分布,分别出现在09:00左右和23:00至翌日01:00.除相对湿度和冬季气温外,其余气象要素与PM2.5浓度在四季均表现为负相关.影响太原市区PM2.5浓度升高的污染源主要位于其NE-ENE-E方向,西北部地区的相对不明显.汛期当达到中雨(降水量≥10 mm)以上级别的降水都对PM2.5浓度降低有明...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号