首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   6篇
综合类   4篇
基础理论   11篇
评价与监测   1篇
  2023年   2篇
  2021年   1篇
  2020年   3篇
  2019年   6篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
为研究抗生素和中药对环境及生物体中菌群的联合毒性作用,以2种常用抗生素氨苄西林钠(ampicillin sodium,AMP)、盐酸四环素(tetracycline hydrochloride,TET)和1种中药提取物盐酸小檗碱(berberine chloride hydrate,BCH)为目标污染物,以大肠杆菌(Escherichia coli,E. coli)为指示生物,分别应用直接均分射线法和均匀设计射线法设计3个二元(AMP-BCH、AMP-TET、BCH-TET)及1个三元混合物体系(AMP-TET-BCH),共20条射线,采用以96孔微板为实验载体的时间微板毒性分析法(time-dependent microplate toxicity analysis method,t-MTA)对3种药物及其混合物体系的毒性进行系统测定.运用拟合归零法分析混合物毒性相互作用类型及强度,选取抑菌作用明显的代表性混合物射线进行暴露前后E. coli核酸溶出量以及电镜扫描分析.结果表明,AMP、TET、BCH及其混合物体系对E. coli的浓度效应曲线为“S”型且时间和浓度依赖抑菌性明显,仅...  相似文献   
2.
重金属污染日益严重,对人类具有潜在威胁。该文以绿藻蛋白核小球藻(Chlorella pyrenoidosa)为受试生物,3种典型重金属污染物镉(Cd)、铜(Cu)和铬(Cr)为研究对象,采用均匀设计射线法设计重金属三元混合物体系(Cd-Cu-Cr),应用时间毒性微板分析法系统考察3种重金属对蛋白核小球藻的单一毒性及联合毒性,并通过分析绿藻中叶绿素和蛋白质含量探讨3种重金属及其混合物的可能的毒性作用机理。结果表明:3种重金属对蛋白核小球藻的毒性均随着暴露时间的延长逐渐增强,呈现明显的时间依赖性;重金属处理后的蛋白核小球藻中叶绿素含量随暴露时间的延长不断减少,如在24~72 h时,Cd处理的蛋白核小球藻中的叶绿素减少率增长较快,后趋于稳定,而Cr和Cu处理后的绿藻在整个暴露时间内叶绿素减少率均增加;Cd和Cr处理后绿藻的蛋白质含量减少率随着暴露时间的延长快速增加,而Cu处理后的绿藻中蛋白质减少率在24~72 h趋于平缓,之后减少率迅速增加;5条混合物射线的毒性均为加和作用,即组分间没有发生明显的毒性相互作用;三元混合物在低浓度时对蛋白核小球藻具有促进生长作用,在高浓度时抑制其生长,即Hormesis现象;三元混合体系处理后的绿藻中叶绿素及蛋白质的含量与单一Cu处理后的变化规律相似,这表明混合物的毒性机制受单一组分的影响。  相似文献   
3.
以3种氨基糖苷类(AG)抗生素:硫酸安普霉素(APR)、双氢链霉素(DIH)和硫酸链霉素(STS)为研究对象,以生态系统中2类重要的水生生物分解者如青海弧菌(Vibrio qinghaiensis sp.-Q67,Q67)和生产者蛋白核小球藻(Chlorella pyrenoidosa,CP)为受试生物,运用均匀设计射线法设计抗生素三元混合物体系,共5条具有不同浓度配比的射线,应用已建立的分别基于Q67和CP的时间毒性微板分析法系统测试抗生素及其三元混合物射线对Q67和CP在不同暴露时间的毒性。对于Q67和CP,暴露时间分别为0.25、2、4、8、12 h和12、24、48、72、96 h。应用浓度加和(CA)模型分析混合物在不同暴露时间的毒性相互作用。结果表明:APR、DIH和STS及其5条混合物射线对2种指示生物的毒性均具有明显的时间依赖性,且Q67对AG抗生素及其混合物射线的响应比CP的灵敏;以半数效应浓度的负对数p EC50值为毒性大小指标,3种抗生素对2种指示生物的毒性大小顺序随暴露时间的变化而变化,3种AG抗生素对Q67和CP分别在12 h和96 h的毒性大小顺序均为STSDIHAPR;5条具有不同浓度配比的混合物射线对Q67在不同暴露时间的毒性均呈加和作用,但对CP的毒性既有加和作用也有拮抗作用,且拮抗作用随暴露时间和组分浓度配比的变化而变化,表明AG抗生素毒性的联合毒性作用与暴露生物、暴露时间以及混合物组分的浓度配比等有关。  相似文献   
4.
3种农药对青海弧菌Q67的联合毒性作用特征   总被引:1,自引:0,他引:1  
农药的大量生产和应用造成了严重的环境污染问题,对生物甚至人类的生存和健康构成了威胁。该文以苯嗪草酮(GLY)、甲霜灵(MET)和草甘膦(MM)为研究对象,以发光菌青海弧菌(Q67)为指示生物,采用直接均分射线法设计3种农药的二元混合物体系,应用时间依赖微板毒性测试方法系统测定3种农药及其二元混合物对Q67的毒性,采用非线性最小二乘法拟合浓度-效应数据,并应用浓度加和模型(CA)分析农药混合体系的毒性相互作用。结果表明:3种农药的浓度-效应曲线均可用Logit函数有效表征,以半数浓度-效应的负对数值(p(EC)_(50))为毒性大小指标,除0.25 h外,3种农药在不同暴露时间的毒性大小顺序均为:MET (p(EC)_(50)=2.56~3.01)MM (p(EC)_(50)=2.35~2.53)GLY (p(EC)_(50)=2.10~2.30);单个农药及其二元混合物的毒性具有时间依赖性,且二元混合物毒性表现出一定的组分依赖性;3种农药二元混合物体系的15条射线对Q67的联合毒性作用方式也具有明显的时间依赖性,混合体系GLY-MET和GLY-MM体系开始的时候呈现明显的拮抗作用,随着暴露时间的延长,毒性作用方式从拮抗变为加和作用,甚至协同作用;而MET-MM的混合物体系呈现明显的时间依赖性拮抗作用,但无协同作用的出现,说明GLY很可能是混合物体系呈现协同作用的原因。  相似文献   
5.
6.
几种抗生素对蛋白核小球藻的时间毒性微板分析法   总被引:4,自引:0,他引:4  
抗生素在不同的暴露时间可能具有不同的毒性变化规律。本文以蛋白核小球藻(C.pyrenoidosa)为受试生物,96孔微板为暴露实验载体,5种抗生素硫酸安普霉素、氯霉素、双氢链霉素、硫酸新霉素和硫酸链霉素为研究对象,通过在C.pyrenoidosa生长周期内选取6个暴露时间节点(即0、12、24、48、72和96 h),建立了抗生素在不同暴露时间对C.pyrenoidosa生长抑制毒性的微板测试方法(简称T-MTA),并应用T-MTA方法系统测定了5种抗生素对C.pyrenoidosa在不同暴露时间的生长抑制毒性。结果表明,抗生素对C.pyrenoidosa生长抑制毒性具有明显的时间依赖特征,即在开始的时候基本无毒性,而后毒性迅速增加,然后毒性增加速度减慢;不同抗生素的毒性随着暴露时间的延长增加速率不同;同一暴露时间内,5种抗生素对C.pyrenoidosa的毒性大小不同;且毒性顺序随着暴露时间延长而发生变化。  相似文献   
7.
等效线图法(isobologram)是评估化学混合物毒性相互作用的经典方法之一,然而该方法仅能评估混合物在某一特殊浓度效应水平(通常为50%的浓度效应水平,即EC50)的联合毒性作用情况。因此,拓展等效线图法并用于不同效应水平下混合物毒性的评估显得尤为必要。以杀菌剂多果定(Dod)和3种离子液体(ILs)包括溴化丁基吡啶([bpy]Br)、溴化己基吡啶([hpy]Br)和溴化辛基吡啶([opy]Br)为混合物组分,采用直线均分射线法设计3组二元混合物体系(Dod-[bpy]Br、Dod-[hpy]Br和Dod-[opy]Br)共15条射线,应用微板毒性分析法系统测定各污染物及其混合物射线对青海弧菌Q67(Vibro qinghaisiense sp. Q67,Q67)的毒性,应用拓展等效线图法分析15条混合物射线在5个不同效应水平(EC20、EC30、EC40、EC50和EC60)的毒性相互作用,并与经典等效线图法和浓度加和模型(CA)评估的结果进行比较。结果表明:以p EC50为毒性指标,3种吡啶ILs对Q67的毒性具有烷基链效应,即毒性大小顺序为Dod-[opy]BrDod-[hpy]BrDod-[bpy]Br; 3组二元混合物体系的15条射线的毒性,随农药Dod浓度比的减少而减弱;拓展等效线图法可以比较直观地表征3组Dod-ILs混合物体系在5个不同效应水平的拮抗作用,且拮抗作用强度随Dod浓度比的增加而变化,即先增强后减弱;拓展等效线图法可以有效地评估二元混合物在多个效应水平的联合毒性相互作用。  相似文献   
8.
污染物在环境中普遍以混合物的形式存在,其累积毒性与毒性相互作用具有潜在的环境风险。因此,本研究以水环境中普遍存在的氨基糖苷类抗生素(硫酸链霉素、硫酸安普霉素和双氢链霉素)和重金属锌(Zn)为目标污染物,以蛋白核小球藻(Chlorella pyrenoidosa,C. pyrenoidosa)为指示生物,应用直接均分射线法设计3种抗生素与Zn的3个二元混合物体系,应用时间毒性微板分析法系统测定3种抗生素和重金属Zn及其二元混合物射线的时间-浓度-毒性数据,以浓度加和(concentration addition,CA)与独立作用(independent action,IA)为标准加和参考模型,分析混合物毒性相互作用及其随时间变化规律。结果表明,随着暴露时间延长,3种抗生素和重金属Zn对C. pyrenoidosa的毒性逐渐增强; 2种模型对3个二元混合物体系的毒性相互作用评估基本一致,即在低浓度区域始终呈现加和作用,而在高浓度区域随暴露时间延长由协同作用逐渐转变为加和作用;而对于同一混合物体系,CA和IA模型预测毒性之间的差距随着浓度增加而增加,且IA预测曲线始终位于CA预测曲线上方,显示了IA模型在评估具有相异组分混合物的毒性时较CA模型接近实际观测值。  相似文献   
9.
氨基甲酸酯类农药广泛应用于农业生产中,其在环境中的残留及其对非靶标生物的毒性作用引起关注。以5种氨基甲酸酯类农药包括残杀威、灭多威、抗蚜威、涕灭威和呋喃丹为研究对象,以蛋白核小球藻为受试生物,应用微板毒性分析法系统测定每种农药及其五元混合物对蛋白核小球藻在不同暴露时间(12、24、48、72和96 h)的生长抑制作用,并同步分析农药对蛋白核小球藻的生理特性如叶绿素含量、蛋白质含量、超氧化物歧化酶(SOD)活性和脂质过氧化物丙二醛(MDA)含量的影响。结果表明,5种农药对蛋白核小球藻的浓度-效应均具有明显的时间依赖性,农药抗蚜威在中低浓度促进绿藻生长,呈现非单调J型浓度-效应曲线(CRC)特征,其余4种农药的CRC呈现经典S型;以半数效应浓度的负对数(p EC50)为毒性大小指标,5种农药在96 h时毒性大小为:呋喃丹(p EC50=3.43)残杀威(p EC50=2.76)抗蚜威(p EC50=2.12)灭多威(p EC50=2.11)涕灭威(p EC50=1.89)。浓度为EC50的5种农药处理后的蛋白核小球藻中叶绿素和蛋白质含量随暴露时间的延长而减少,但不同农药处理的绿藻中叶绿素和蛋白质含量减少率随暴露时间延长变化趋势稍有不同; SOD酶活性随着暴露时间延长逐渐下降,MDA含量逐渐增加,这说明藻细胞受到破坏,脂质过氧化的损害程度超过细胞修复能力,SOD活性被抑制,细胞的抗氧化能力下降,藻细胞内的H2O2不断积累,导致MDA含量升高。五元混合物对蛋白核小球藻的毒性也具有一定的时间依赖性,并表现出刺激作用,即hormesis现象,且混合物毒性与组分浓度比具有良好的线性相关性;暴露于混合物的小球藻均在96 h出现了刺激效应,其叶绿素与蛋白质含量随暴露时间延长不断增加,SOD活性不断升高,MDA含量不断减少;五元混合物均在96 h呈现出拮抗作用,且与混合物的浓度和组分浓度比相关。  相似文献   
10.
高效铜绿微囊藻溶藻菌WJ6的分离鉴定及溶藻特性   总被引:1,自引:0,他引:1  
洪桂云  马少雄  王佳  张瑾 《中国环境科学》2018,38(11):4269-4275
以铜绿微囊藻为研究对象,从富营养化水体分离了一株高效溶藻菌,通过分析形态学、生理生化特征及16S rDNA序列比对,鉴定了该溶藻菌株,分析了该菌株对铜绿微囊藻的溶藻方式、溶藻特性及其不同培养时期、不同浓度菌液及不同环境因子对溶藻效果的影响,并探讨了其可能的溶藻机制.研究表明:WJ6属于沙雷氏菌属(Serratia sp.GenBank登录号为KY462187);溶藻菌WJ6以胞外释放溶藻物质为主直接溶藻为辅的溶藻方式;溶藻菌WJ6处于对数期时的溶藻率最高达87.50%;菌液浓度达1.4×109CFU/mL以上,溶藻率最高为95.69%;在30℃、pH8条件下,溶藻率达90.00%;改良的基本培养基培养的溶藻菌溶藻率最高达98.50%;铵离子浓度大于2mol/L时,溶藻菌的溶藻率98.33%;当盐度为0.5%时,溶藻率较高为92.77%.溶藻菌株WJ6是1株高效溶铜绿微囊藻菌,在富营养化治理方面具有较好的应用前景.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号