首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12029篇
  免费   1234篇
  国内免费   2218篇
安全科学   2371篇
废物处理   305篇
环保管理   2093篇
综合类   6236篇
基础理论   1531篇
环境理论   18篇
污染及防治   737篇
评价与监测   797篇
社会与环境   711篇
灾害及防治   682篇
  2024年   28篇
  2023年   259篇
  2022年   448篇
  2021年   526篇
  2020年   510篇
  2019年   484篇
  2018年   401篇
  2017年   466篇
  2016年   530篇
  2015年   588篇
  2014年   670篇
  2013年   894篇
  2012年   964篇
  2011年   1093篇
  2010年   731篇
  2009年   743篇
  2008年   624篇
  2007年   800篇
  2006年   720篇
  2005年   582篇
  2004年   454篇
  2003年   437篇
  2002年   363篇
  2001年   300篇
  2000年   245篇
  1999年   239篇
  1998年   171篇
  1997年   176篇
  1996年   160篇
  1995年   127篇
  1994年   130篇
  1993年   97篇
  1992年   70篇
  1991年   61篇
  1990年   45篇
  1989年   38篇
  1988年   44篇
  1987年   24篇
  1986年   14篇
  1985年   20篇
  1984年   15篇
  1983年   12篇
  1982年   25篇
  1981年   20篇
  1980年   19篇
  1979年   20篇
  1978年   14篇
  1977年   12篇
  1972年   18篇
  1971年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
• Real ML-GFW with high salinity and high organics was degraded by O3/H2O2 process. • Successful optimization of operation conditions was attained using RSM based on CCD. • Single-factor experiments in advance ensured optimal experimental conditions. • The satisfactory removal efficiency of TOC was achieved in spite of high salinity. • The initial pH plays the most significant role in the degradation of ML-GFW. The present study reports the use of the O3/H2O2 process in the pretreatment of the mother liquor of gas field wastewater (ML-GFW), obtained from the multi-effect distillation treatment of the gas field wastewater. The range of optimal operation conditions was obtained by single-factor experiments. Response surface methodology (RSM) based on the central composite design (CCD) was used for the optimization procedure. A regression model with Total organic carbon (TOC) removal efficiency as the response value was established (R2 = 0.9865). The three key factors were arranged according to their significance as: pH>H2O2 dosage>ozone flow rate. The model predicted that the best operation conditions could be obtained at a pH of 10.9, an ozone flow rate of 0.8 L/min, and H2O2 dosage of 6.2 mL. The dosing ratio of ozone was calculated to be 9.84 mg O3/mg TOC. The maximum removal efficiency predicted was 75.9%, while the measured value was 72.3%. The relative deviation was found to be in an acceptable range. The ozone utilization and free radical quenching experiments showed that the addition of H2O2 promoted the decomposition of ozone to produce hydroxyl radicals (·OH). This also improved the ozone utilization efficiency. Gas chromatography-mass spectrometry (GC-MS) analysis showed that most of the organic matters in ML-GFW were degraded, while some residuals needed further treatment. This study provided the data and the necessary technical supports for further research on the treatment of ML-GFW.  相似文献   
2.
Large TNT equivalent explosions usually arise from accidents occurring during the transportation, storage, and manufacturing of chemicals relevant to process industries. The blast wave generated by the explosion will spread and interact with the surrounding factories and storehouses, damaging the building structures within several kilometers and causing significant casualties and property losses. This study aims to develop an efficient numerical simulation method to predict blast loads to estimate the consequences of accidents involving far-field free air bursts or surface burst explosions. Before its interaction with the interested target, a blast wave is generated in the numerical model by specifying the initial and boundary conditions of the disturbed air. Based on empirical data of incident overpressure, an explicit formula to calculate the air particle velocity is derived from the governing equations of a perfect inviscid gas. A simplified path line method is proposed to calculate the air density. The proposed method is applied to the LS-DYNA CESE solver to simulate the blast loads on building structures in the far field. Validations against empirical data and experiments indicate that the proposed method is sufficiently accurate for engineering applications and, through a case study, presents a more efficient performance than the LOAD_BLAST_ENHANCED (LBE) and mapping methods.  相似文献   
3.
Urbanization and mass movement of the population from rural areas and small cities to megacities have led to environmental, economic, and social problems in Iran. In dealing with these challenges, assessing resource and environmental carrying capacity (RECC) is considered an effective method to leverage space and capital to achieve sustainable development. This study aimed to rank the provincial RECC in Iran. Toward this purpose, environmental indices were generated from remotely sensed and statistical census data. Then, the provinces were scored in terms of environmental, economic, and infrastructural carrying capacities, and RECC using the mean variance analysis method. Results demonstrated that in most areas, there is no relationship between economic and infrastructural capacities and development. Statistically, a correlation coefficient of −0.53 between economic and environmental carrying capacities indicated excessive use of environmental capacities. Moreover, the spatial distribution pattern of environmental, economic, and infrastructural carrying capacity was entirely heterogeneous between the provinces; there was a northeast–southwest pattern in terms of infrastructural capacity and an economic pattern from north to south. The distribution pattern of RECC is most consistent with the environmental capacity, pointing at the high weight of the indicators of the RECC model. In conclusion, this research offers a new vision for policymakers and provides a theoretical and applicable framework for implementing sustainable strategies in land-use planning. It is recommended that the RECC concept and tools can be used not only for planning but also for measuring the efficiency of spatial development programs and establishing land balances in the region.  相似文献   
4.
The High Plains aquifer (HPA) is the primary water source for agricultural irrigation in the US Great Plains. The water levels in many locations of the aquifer have declined steadily over the past several decades because the rate of water withdrawals exceeds recharge, which has been a serious concern to the water resources management in the region. We evaluated temporal trends and variations in agricultural water use and hydroclimatic variables including precipitation, air temperature, reference evapotranspiration, runoff, groundwater level, and terrestrial water storage across the HPA region for different periods from 1985 to 2020 at the grid, county, or region scale. The results showed that water withdrawals decreased from 21.3 km3/year in 1985 to 18.2 km3/year in 2015, while irrigated croplands increased from 71,928 km2 in 1985 to 78,464 km2 in 2015 in the entire HPA. The hydroclimatic time-series showed wetting trends in most of the northern HPA, but drying and warming trends in the southern region from 1985 to 2020. The groundwater level time-series indicated flat trends in the north, but significant declining in the central and southern HPA. Trends in irrigation water withdrawals and irrigation area across the HPA were controlled by the advancement of irrigation systems and technologies and the management of sustainable water use, but also were affected by dynamical changes in the hydroclimatic conditions.  相似文献   
5.
Land managers decide how to allocate resources among multiple threats that can be addressed through multiple possible actions. Additionally, these actions vary in feasibility, effectiveness, and cost. We sought to provide a way to optimize resource allocation to address multiple threats when multiple management options are available, including mutually exclusive options. Formulating the decision as a combinatorial optimization problem, our framework takes as inputs the expected impact and cost of each threat for each action (including do nothing) and for each overall budget identifies the optimal action to take for each threat. We compared the optimal solution to an easy to calculate greedy algorithm approximation and a variety of plausible ranking schemes. We applied the framework to management of multiple introduced plant species in Australian alpine areas. We developed a model of invasion to predict the expected impact in 50 years for each species-action combination that accounted for each species’ current invasion state (absent, localized, widespread); arrival probability; spread rate; impact, if present, of each species; and management effectiveness of each species-action combination. We found that the recommended action for a threat changed with budget; there was no single optimal management action for each species; and considering more than one candidate action can substantially increase the management plan's overall efficiency. The approximate solution (solution ranked by marginal cost-effectiveness) performed well when the budget matched the cost of the prioritized actions, indicating that this approach would be effective if the budget was set as part of the prioritization process. The ranking schemes varied in performance, and achieving a close to optimal solution was not guaranteed. Global sensitivity analysis revealed a threat's expected impact and, to a lesser extent, management effectiveness were the most influential parameters, emphasizing the need to focus research and monitoring efforts on their quantification.  相似文献   
6.
Complex systems often experience a long period of incubation before accidents occur. Therefore, a proactive risk assessment is essential for process safety. The conventional job hazard analysis (JHA) method has been an effective tool to conduct a process risk assessment in the high-risk industrial field. However, the conventional JHA is inadequate for the proactive risk assessment since it is usually conducted during and before one specific operation process. Operations such as startup and maintenance are performed repeatedly on the lifecycle of a plant. Therefore, the risk reduction measures for the industrial process should include not only preventive actions obtained from the conventional JHA but also recovery ones. Resilience engineering (RE) has proven to be helpful for the recovery analysis of a complex system. The objective of this paper is to propose a proactive and comprehensive process risk assessment approach based on JHA and RE. The mechanism of applying RE to address operation process risk is illustrated. The integrated approach can provide guidelines to establish proactive risk reduction measures as well as maintain a low-risk level. Finally, a gas transmission startup process risk assessment case is presented to demonstrate its applicability.  相似文献   
7.
在河南油田开展旋流气浮除油装置的现场试验,考察进水流量和曝气量对旋流气浮除油装置除油效果的影响。试验结果表明:在进水流量为1.8 m3/h、曝气量为0.5 L/min时,除油率最高达到96.03%;在不添加任何药剂的条件下,装置处理效果稳定;连续运行6 d内,进水含油量为174.57~1 193.15 mg/L时,出水含油量可以保持在137.38 mg/L以下,除油率为58.58%~94.53%。  相似文献   
8.
通过紫外吸收光谱,三维荧光光谱结合平行因子分析(EEMs-PARAFAC)方法及主成分分析(PCA),研究了夏季渭河西安段水体中的溶解性有机质(DOM)的组成、来源,及其与水质指标的相关性.在研究区域共检出2种类别5个不同的DOM组分,分别为类腐殖质荧光组分C1、C2、C3、C5和1个类蛋白类荧光组分C4,5个组分具有同源性.对比分析光谱斜率S、SUVA254、α355和DOC浓度,上游(S1—S5)和下游(S13—S17)各组分分子量和腐殖化程度接近但来源有所差异,中游(S6—S12、S18—S19)分子量和腐殖化程度最低;研究区域DOM和CDOM浓度值变化基本保持一致.通过三维光谱参数和主成分分析进行DOM源解析,内源贡献率为72.36%,外源贡献率为12.45%,累计方差贡献率为84.81%;污废水排放是组分C1、C4的主要来源,C2、C3、C5则来源于城市景观水体和湿地公园中微生物和浮游动植物的活动产生,TN与外源具有较好的相关性而TP与内源相关性较高.水质指标DO、DOC、COD、TN、TP与DOM组分有较强的相关性.在此基础上建立了多元线性回归方程,一定程度上能够利用荧光组分组成和特征反映渭河夏季的水质状况.  相似文献   
9.
以1979—2020年我国中央政府颁发的411份城市生活垃圾治理政策文本作为研究对象,运用共词与聚类分析方法研究了我国不同时期城市生活垃圾治理公共政策焦点的演变规律。结果发现:纵观我国城市生活垃圾治理公共政策焦点的演变轨迹,在"技术路线"、"垃圾属性"、"管理手段"、"治理结构"和"保障机制"方面发生了显著的政策主题变迁,呈现出垃圾治理朝更加绿色、更加经济方向发展的趋势。未来,应从监管体系、资源评估、财政补贴、空间布局4个方面保障生活垃圾零污染、高价值资源化治理。  相似文献   
10.
以湖南石门雄黄尾矿污染土壤为对象,研究纵向不同深度、横向不同距离土样中的重金属污染程度以及细菌群落结构变化规律,查明砷污染土壤的核心微生物组成并将其与土壤理化指标进行共存网络图分析。结果表明:该尾矿区的土壤各项重金属指标严重超标,尤以铅(626.54 mg·kg?1,Ei=105.48)、砷(1804.75 mg·kg?1,Ei=565.75)、镉(31.46 mg·kg?1,Ei=7491.5)的生态危害性最强;土壤采样深度与重金属综合潜在生态风险指数(RI)呈显著正相关(r=0.79,P=0.000),而横向样品中RI与采样距离显著负相关(r=?0.85,P=0.000)。在污染土壤中,变形杆菌门(Proteobacteria,54.35%±17.16%)和放线杆菌门(Actinobacteria,22.39%±10.64%)占主导地位,属层级中假单孢杆菌属(Pseudomonas,16.47%±11.84%)、不动杆菌属(Acinetobacter,8.07%±7.11%)以及硫酸状杆菌属(Acidithiobacillus,7.53%±14.68%)相对丰度较高;而26个共享类群占据了该尾矿污染土壤中微生物群落总平均相对丰度90%以上,尽管不同属的具体相对丰度在不同样品间的分布趋势差异较大。纵剖采集的污染土样中,铁原体属(Ferroplasma)、硫酸状杆菌属(Acidithiobacillus)、硫化杆菌属(Sulfobacillus)、乳杆菌属(Lactobacillus)和硝化螺旋菌属(Nitrospira)占优势,与理化的共存网络图分析(相关系数|r|≥0.6,P<0.05)显示部分类群与亚铁、游离态砷和镉成显著正相关,而与pH成显著负相关;横向采集的土样中,以嗜酸菌属(Acidiphilium)、假单孢杆菌属(Pseudomonas)、棒状杆菌属(Corynebacterium)、硫杆菌属(Thiobacillus)等为主,部分类群与总砷、铅成显著正相关,而与结合态或包蔽型砷成显著负相关。综上,该研究不仅对目标区域尾矿不同重金属污染程度进行了分析,同时探讨了污染土壤中核心响应类群的组成多样性,为筛选潜在重金属抗性菌群或工程菌群提供理论基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号