首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   2篇
  国内免费   2篇
安全科学   4篇
废物处理   1篇
环保管理   2篇
综合类   5篇
基础理论   40篇
污染及防治   4篇
社会与环境   3篇
灾害及防治   2篇
  2021年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   6篇
  2008年   9篇
  2007年   11篇
  2006年   3篇
  2005年   7篇
  2004年   2篇
  2002年   1篇
  2001年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
1.
Natural‐resource managers and other conservation practitioners are under unprecedented pressure to categorize and quantify the vulnerability of natural systems based on assessment of the exposure, sensitivity, and adaptive capacity of species to climate change. Despite the urgent need for these assessments, neither the theoretical basis of adaptive capacity nor the practical issues underlying its quantification has been articulated in a manner that is directly applicable to natural‐resource management. Both are critical for researchers, managers, and other conservation practitioners to develop reliable strategies for assessing adaptive capacity. Drawing from principles of classical and contemporary research and examples from terrestrial, marine, plant, and animal systems, we examined broadly the theory behind the concept of adaptive capacity. We then considered how interdisciplinary, trait‐ and triage‐based approaches encompassing the oft‐overlooked interactions among components of adaptive capacity can be used to identify species and populations likely to have higher (or lower) adaptive capacity. We identified the challenges and value of such endeavors and argue for a concerted interdisciplinary research approach that combines ecology, ecological genetics, and eco‐physiology to reflect the interacting components of adaptive capacity. We aimed to provide a basis for constructive discussion between natural‐resource managers and researchers, discussions urgently needed to identify research directions that will deliver answers to real‐world questions facing resource managers, other conservation practitioners, and policy makers. Directing research to both seek general patterns and identify ways to facilitate adaptive capacity of key species and populations within species, will enable conservation ecologists and resource managers to maximize returns on research and management investment and arrive at novel and dynamic management and policy decisions.  相似文献   
2.
SO2 remains a common air pollutant, almost half of the world’s population uses coal and biomass fuels for domestic energy. Limited evidence suggests that exposure to SO2 may be associated with neurotoxicity and increased risk of hospitalization and mortality of many brain disorders. However, our understanding of the mechanisms by which SO2 causes harmful insults on neurons remains elusive. To explore the molecular mechanism of SO2-induced neurotoxic effects in hippocampal neurons, we evaluated the synaptic plasticity in rat hippocampus after exposure to SO2 at various concentrations (3.5 and 7 mg m−3, 6 h d−1, for 90 d) in vivo, and in primary cultured hippocampal neurons (DIV7 and DIV14) after the treatment of SO2 derivatives in vitro. The results showed that SYP, PSD-95, NR-2B, p-ERK1/2 and p-CREB were consistently inhibited by SO2/SO2 derivatives in more mature hippocampal neurons in vivo and in vitro, while the effects were opposite in young hippocampal neurons. Our results indicated that in young neurons, SO2 exposure produced neuronal insult is similar to ischemic injury; while in more mature neurons, SO2 exposure induced synaptic dysfunctions might participate in cognitive impairment. The results implied that SO2 inhalation could cause different neuronal injury during brain development, and suggested that the molecular mechanisms might be involved in the changes of synaptic plasticity.  相似文献   
3.
One hypothesis for the maintenance of genetic variation states that alternative genotypes are adapted to different environmental conditions (i.e., genotype-by-environment interaction G×E) that vary in space and time. Although G×E has been demonstrated for morphological traits, little evidence has been given whether these G×E are associated with traits used as signal in mate choice. In three wild bird species, we investigated whether the degree of melanin-based coloration, a heritable trait, covaries with nestling growth rate in rich and poor environments. Variation in the degree of reddish-brown phaeomelanism is pronounced in the barn owl (Tyto alba) and tawny owl (Strix aluco), and variation in black eumelanism in the barn owl and Alpine swift (Apus melba). Melanin-based coloration has been shown to be a criterion in mate choice in the barn owl. We cross-fostered hatchlings to test whether nestlings sired by parents displaying melanin-based colorations to different extent exhibit alternative growth trajectories when raised by foster parents in poor (experimentally enlarged broods) and rich (experimentally reduced broods) environments. With respect to phaeomelanism, barn owl and tawny owl offspring sired by redder parents grew more rapidly in body mass only in experimentally reduced broods. With respect to eumelanism, Alpine swift offspring of darker fathers grew their wings more rapidly only in experimentally enlarged broods, a difference that was not detected in reduced broods. These interactions between parental melanism and offspring growth rate indicate that individuals display substantial plasticity in response to the rearing environment which is associated with the degree of melanism: at least with respect to nestling growth, phaeomelanic and eumelanic individuals are best adapted to rich and poor environments, respectively. It now remains to be investigated why eumelanism and phaeomelanism have a different signaling function and what the lifelong consequences of these melanism-dependent allocation strategies are. This is important to fully appraise the role played by environmental heterogeneity in maintaining variation in the degree of melanin-based coloration.  相似文献   
4.
Parasitized animals may alter their life histories to minimize the costs of parasitism. Organisms are predicted to decrease investment in current reproduction when parasitism has the greatest impact on current reproductive ability. In contrast, if parasitism decreases residual reproductive value, hosts should increase current reproductive investment, referred to as fecundity compensation or terminal investment. In mammalian hosts, parasitic infection most often leads to reductions in current host reproduction, perhaps attributable to the emphasis on parasites that are unlikely to impact the host’s residual reproductive value. In this study, the life history response of a rodent, Peromyscus maniculatus, to infection with a parasite that should strongly impact the residual reproductive value of its host (Schistosomatium douthitti, Trematoda) was examined. Infection decreased survival for hosts exposed to a high dose of parasites and was chronic in survivors, confirming that infection had strong impacts for the residual reproductive value of the host. As predicted, infected mice increased their reproductive output, producing litters of greater mass due to heavier offspring. However, this increased output was observed after a greater delay to begin breeding in infected mice and was not observed in animals that suffered early mortality. The deer mouse S. douthitti system may provide a rare example of fecundity compensation in mammals.  相似文献   
5.
以螺形龟甲轮虫为研究对象,于2015年7月至2018年12月,选取广东南澳岛及湖南常德中营养至中度富营养水体共14个样点进行采样,对螺形龟甲轮虫进行了形态特征测量分析.结果表明,水温是螺形龟甲轮虫形态变化最主要影响因子,且与背甲长、背甲宽、棘刺长度均呈显著负相关(P<0.01).不同纬度条件下螺形龟甲轮虫形态参数差异显著,常德地区螺形龟甲轮虫个体显著大于南澳地区(P<0.05).螺形龟甲轮虫形态存在显著季节性变化,各形态参数随季节波动呈现夏秋、冬春分化模式.螺形龟甲轮虫后棘刺长随水体营养程度增加而减小(F=159.4,P<0.01),富营养条件下后棘刺长度占全长的比例减小(F=167.5,P<0.01).研究结果表明,螺形龟甲轮虫棘刺长度可作为水质生物监测指标,并为研究全球气候变暖提供重要参考.  相似文献   
6.
研究了睫毛萼凤仙花在干、湿两种土壤水分条件下和密、疏两种栽种密度条件下形态和生长的表型可塑性。睫毛萼凤仙花在土壤水分饱和条件下的形态参数和生物量积累都高于干旱条件,在稀疏栽植下的形态参数和生物量积累也高于密集栽种。睫毛萼凤仙花通过调整器官生物量分配和形态参数来适应不利的环境,但付出了减少后代数目的代价。睫毛萼凤仙花适宜在土壤水分充足、植株密度不高的生境中生长。  相似文献   
7.
Which task a social insect worker engages in is influenced by the worker’s age, genotype and the colony’s needs. In the honeybee, Apis mellifera, genotype influences both the age a worker switches tasks and its propensity of engaging in specialist tasks, such as water collecting, which only some workers will perform. In this study, we used colonies with natural levels of genetic diversity and manipulated colony age demography to drastically increase the stimuli for the generalist tasks of foraging and nursing, which all workers are thought to engage in at some point in their lives. We examined the representation of worker patrilines engaged in nursing and foraging before and after the perturbation. The representation of patrilines among foragers and nurses differed from that of their overall colony’s population. In the case of foraging, over- and underrepresentation of some patrilines was not simply due to differences in rates of development among patrilines. We show that replacement foragers tend to be drawn from patrilines that were overrepresented among foragers before the perturbation, suggesting that there is a genetic component to the tendency to engage in foraging. In contrast, the representation of patrilines in replacement nurses differed from that in the unperturbed nursing population. Our results show that there is a genetic influence on even the generalist tasks of foraging and nursing, and that the way patrilines in genetically diverse colonies respond to increases in task stimuli depends upon the task. The possible significance of this genetic influence on task allocation is discussed. Electronic supplementary material Supplementary material is available in the online version of this article at doi: and is accessible to authorized users.  相似文献   
8.
Food availability is expected to influence the relative cost of different mating tactics, but little attention has been paid to this potential source of adaptive geographic variation in behavior. Associations between the frequency of different mating tactics and resource availability could arise because tactic use responds directly to food intake (phenotypic plasticity), because populations exposed to different average levels of food availability have diverged genetically in tactic use, or both. Different populations of guppies (Poecilia reticulata) in Trinidad experience different average levels of food availability. We combined field observations with laboratory “common garden” and diet experiments to examine how this environmental gradient has influenced the evolution of male mating tactics. Three independent components of variation in male behavior were found in the field: courtship versus foraging, dominance interactions, and interference competition versus searching for mates. Compared with low-food-availability sites, males at high-food-availability sites devoted more effort to interference competition. This difference disappeared in the common garden experiment, which suggests that it was caused by phenotypic plasticity and not genetic divergence. In the diet experiment, interference competition was more frequent and intense among males raised on the greater of two food levels, but this was only true for fish descended from sites with low food availability. Thus, the association between interference competition and food availability in the field can be attributed to a genetically variable norm of reaction. Genetically variable norms of reaction with respect to food intake were found for the other two behavioral components as well and are discussed in relation to the patterns observed in the field. Our results indicate that food availability gradients are an important, albeit complex, source of geographic variation in male mating strategies.  相似文献   
9.
Predation risk influences the duration of offspring development in many species where embryos develop from externally shed eggs. Surprisingly, such predator-mediated effects on offspring development have rarely been explored in live-bearers. In this paper, we use the guppy (Poecilia reticulata), a live-bearing freshwater fish, to test whether the duration of brood retention (the time from mating to parturition) is influenced by experimental changes in the perceived level of predation. Because the swimming performance of female guppies is impaired during late pregnancy, we predicted that females would withhold broods for shorter periods when they are exposed to cues that signal a heightened risk of predation on adults rather than on juveniles. We therefore simulated increased risk of predation on adults by using a combination of pike-shaped models (resembling natural predators that prey on adult guppies) and ‘alarm substances’ derived from the skin extracts of adult conspecific females. Our results revealed that, under simulated predation risk, female guppies produced broods significantly more quickly than their counterparts assigned to a control group where predator cues were absent. A subsequent evaluation of offspring swimming performance revealed a significant positive association between neonate swimming speeds and the duration of brood retention, suggesting that by accelerating parturition, females may produce offspring with impaired locomotor skills. These findings, in conjunction with similar results from other live-bearing species, suggest that the conditions experienced by gestating females can generate significant variation in the timing of offspring development with potentially important implications for offspring fitness.  相似文献   
10.
In temperate regions, winter presents animals with a number of challenges including depressed food abundance, increased daily energy requirements, higher frequency of extreme weather events and shortened day length. Overcoming these constraints is critical for overwintering survival and scheduling of future breeding of long-lived species and is likely to be state dependent, associated with intrinsic abilities such as food acquisition rates. We examined the relationship between environmental and intrinsic factors on overwintering foraging and subsequent breeding phenology of the European shag Phalacrocorax aristotelis, a diurnal marine predator. We tested a range of hypotheses relating to overwintering foraging time and location. We found that individuals greatly increased their foraging time in winter to a peak of more than 90% of available daylight at the winter solstice. The seasonal patterns of foraging time appear to be driven by a combination of light levels and weather conditions and may be linked to the availability of the shag's principal prey, the lesser sandeel Ammodytes marinus. There was no evidence that shags dispersed south in winter to increase potential foraging time. Foraging time decreased after the winter solstice and, crucially, was correlated with subsequent breeding phenology, such that individuals that spent less time foraging in February bred earlier. The relationship was much stronger in females than males, in line with their more direct control of timing of breeding. Our results demonstrate that pre-breeding intrinsic foraging ability is critical in determining breeding phenology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号