首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12605篇
  免费   1720篇
  国内免费   7567篇
安全科学   1964篇
废物处理   514篇
环保管理   1131篇
综合类   12274篇
基础理论   2436篇
环境理论   3篇
污染及防治   2289篇
评价与监测   623篇
社会与环境   420篇
灾害及防治   238篇
  2024年   25篇
  2023年   474篇
  2022年   704篇
  2021年   811篇
  2020年   774篇
  2019年   818篇
  2018年   689篇
  2017年   649篇
  2016年   722篇
  2015年   868篇
  2014年   870篇
  2013年   1348篇
  2012年   1415篇
  2011年   1468篇
  2010年   1032篇
  2009年   1260篇
  2008年   964篇
  2007年   1109篇
  2006年   1132篇
  2005年   815篇
  2004年   672篇
  2003年   582篇
  2002年   453篇
  2001年   401篇
  2000年   342篇
  1999年   276篇
  1998年   198篇
  1997年   187篇
  1996年   158篇
  1995年   150篇
  1994年   107篇
  1993年   95篇
  1992年   71篇
  1991年   37篇
  1990年   33篇
  1989年   25篇
  1988年   17篇
  1987年   12篇
  1986年   15篇
  1985年   4篇
  1984年   8篇
  1983年   11篇
  1982年   15篇
  1981年   10篇
  1980年   7篇
  1979年   4篇
  1978年   5篇
  1973年   5篇
  1972年   5篇
  1971年   33篇
排序方式: 共有10000条查询结果,搜索用时 23 毫秒
1.
• Real ML-GFW with high salinity and high organics was degraded by O3/H2O2 process. • Successful optimization of operation conditions was attained using RSM based on CCD. • Single-factor experiments in advance ensured optimal experimental conditions. • The satisfactory removal efficiency of TOC was achieved in spite of high salinity. • The initial pH plays the most significant role in the degradation of ML-GFW. The present study reports the use of the O3/H2O2 process in the pretreatment of the mother liquor of gas field wastewater (ML-GFW), obtained from the multi-effect distillation treatment of the gas field wastewater. The range of optimal operation conditions was obtained by single-factor experiments. Response surface methodology (RSM) based on the central composite design (CCD) was used for the optimization procedure. A regression model with Total organic carbon (TOC) removal efficiency as the response value was established (R2 = 0.9865). The three key factors were arranged according to their significance as: pH>H2O2 dosage>ozone flow rate. The model predicted that the best operation conditions could be obtained at a pH of 10.9, an ozone flow rate of 0.8 L/min, and H2O2 dosage of 6.2 mL. The dosing ratio of ozone was calculated to be 9.84 mg O3/mg TOC. The maximum removal efficiency predicted was 75.9%, while the measured value was 72.3%. The relative deviation was found to be in an acceptable range. The ozone utilization and free radical quenching experiments showed that the addition of H2O2 promoted the decomposition of ozone to produce hydroxyl radicals (·OH). This also improved the ozone utilization efficiency. Gas chromatography-mass spectrometry (GC-MS) analysis showed that most of the organic matters in ML-GFW were degraded, while some residuals needed further treatment. This study provided the data and the necessary technical supports for further research on the treatment of ML-GFW.  相似文献   
2.
• Bacteria could easily and quickly attached onto TEP to form protobiofilms. • TEP-protobiofilm facilitate the transport of bacteria to membrane surface. • More significant flux decline was observed in the presence of TEP-protobiofilms. • Membrane fouling shows higher sensitivity to protobiofilm not to bacteria level. Transparent exopolymer particles (TEPs) are a class of transparent gel-like polysaccharides, which have been widely detected in almost every kind of feed water to membrane systems, including freshwater, seawater and wastewater. Although TEP have been thought to be related to the membrane fouling, little information is currently available for their influential mechanisms and the pertinence to biofouling development. The present study, thus, aims to explore the impact of TEPs on biofouling development during ultrafiltration. TEP samples were inoculated with bacteria for several hours before filtration and the formation of “protobiofilm” (pre-colonized TEP by bacteria) was examined and its influence on biofouling was determined. It was observed that the bacteria can easily and quickly attach onto TEPs and form protobiofilms. Ultrafiltration experiments further revealed that TEP-protobiofilms served as carriers which facilitated and accelerated transport of bacteria to membrane surface, leading to rapid development of biofouling on the ultrafiltration membrane surfaces. Moreover, compared to the feed water containing independent bacteria and TEPs, more flux decline was observed with TEP-protobiofilms. Consequently, it appeared from this study that TEP-protobiofilms play a vital role in the development of membrane biofouling, but unfortunately, this phenomenon has been often overlooked in the literature. Obviously, these findings in turn may also challenge the current understanding of organic fouling and biofouling as membrane fouling caused by TEP-protobiofilm is a combination of both. It is expected that this study might promote further research in general membrane fouling mechanisms and the development of an effective mitigation strategy.  相似文献   
3.
• A novel and multi-functional clay-based oil spill remediation system was constructed. • TiO2@PAL functions as a particulate dispersant to break oil slick into tiny droplets. • Effective dispersion leads to the direct contact of TiO2 with oil pollutes directly. • TiO2 loaded on PAL exhibits efficient photodegradation for oil pollutants. • TiO2@PAL shows a typical dispersion-photocatalysis synergistic remediation. Removing spilled oil from the water surface is critically important given that oil spill accidents are a common occurrence. In this study, TiO2@Palygorskite composite prepared by a simple coprecipitation method was used for oil spill remediation via a dispersion-photodegradation synergy. Diesel could be efficiently dispersed into small oil droplets by TiO2@Palygorskite. These dispersed droplets had an average diameter of 20–30 mm and exhibited good time stability. The tight adsorption of TiO2@Palygorskite on the surface of the droplets was observed in fluorescence and SEM images. As a particulate dispersant, the direct contact of TiO2@Palygorskite with oil pollutants effectively enhanced the photodegradation efficiency of TiO2 for oil. During the photodegradation process, •O2and •OH were detected by ESR and radical trapping experiments. The photodegradation efficiency of diesel by TiO2@Palygorskite was enhanced by about 5 times compared with pure TiO2 under simulated sunlight irradiation. The establishment of this new dispersion-photodegradation synergistic remediation system provides a new direction for the development of marine oil spill remediation.  相似文献   
4.
• Sulfidation significantly enhanced As(V) immobilization in soil by zerovalent iron. • S-ZVI promoted the conversion of exchangeable As to less mobile Fe-Mn bound As. • Column test further confirmed the feasibility of sulfidated ZVI on As retention. • S-ZVI amendment and magnetic separation markedly reduced TCLP leachability of As. In this study, the influences of sulfidation on zero-valent iron (ZVI) performance toward As(V) immobilization in soil were systemically investigated. It was found that, compared to unamended ZVI, sulfidated ZVI (S-ZVI) is more favorable to immobilize As(V) in soil and promote the conversion of water soluble As to less mobile Fe-Mn bound As. Specifically, under the optimal S/Fe molar ratio of 0.05, almost all of the leached As could be sequestrated by>0.5 wt.% S-ZVI within 3 h. Although the presence of HA could decrease the desorption of As from soil, HA inhibited the reactivity of S-ZVI to a greater extent. Column experiments further proved the feasibility of applying S-ZVI on soil As(V) immobilization. More importantly, to achieve a good As retention performance, S-ZVI should be fully mixed with soil or located on the downstream side of As migration. The test simulating the flooding conditions in rice culture revealed there was also a good long-term stability of soil As(V) after S-ZVI remediation, where only 0.7% of As was desorbed after 30 days of incubation. Magnetic separation was employed to separate the immobilized As(V) from soil after S-ZVI amendment, where the separation efficiency was found to be dependent of the iron dosage, liquid to soil ratio, and reaction time. Toxicity characteristic leaching procedure (TCLP) tests revealed that the leachability of As from soil was significantly reduced after the S-ZVI amendment and magnetic separation treatment. All these findings provided some insights into the remediation of As(V)-polluted soil by ZVI.  相似文献   
5.
•Bacterially-mediated coupled N and Fe processes examined in incubation experiments. •NO3 reduction was considerably inhibited as initial Fe/N ratio increased. •The maximum production of N2 occurred at an initial Fe/N molar ratio of 6. •Fe minerals produced at Fe/N ratios of 1–2 were mainly easily reducible oxides. The Fe/N ratio is an important control on nitrate-reducing Fe(II) oxidation processes that occur both in the aquatic environment and in wastewater treatment systems. The response of nitrate reduction, Fe oxidation, and mineral production to different initial Fe/N molar ratios in the presence of Paracoccus denitrificans was investigated in 132 h incubation experiments. A decrease in the nitrate reduction rate at 12 h occurred as the Fe/N ratio increased. Accumulated nitrite concentration at Fe/N ratios of 2–10 peaked at 12–84 h, and then decreased continuously to less than 0.1 mmol/L at the end of incubation. N2O emission was promoted by high Fe/N ratios. Maximum production of N2 occurred at a Fe/N ratio of 6, in parallel with the highest mole proportion of N2 resulting from the reduction of nitrate (81.2%). XRD analysis and sequential extraction demonstrated that the main Fe minerals obtained from Fe(II) oxidation were easily reducible oxides such as ferrihydrite (at Fe/N ratios of 1–2), and easily reducible oxides and reducible oxides (at Fe/N ratios of 3–10). The results suggest that Fe/N ratio potentially plays a critical role in regulating N2, N2O emissions and Fe mineral formation in nitrate-reducing Fe(II) oxidation processes.  相似文献   
6.
• Photocatalytic activity was improved in TiO2 thin film by rapid thermal annealing. • Photoreactor was designed for TiO2 thin film. • Considerable reusability and durability of prepared photocatalysts were studied. Un-biodegradable pharmaceuticals are one of the major growing threats in the wastewaters. In the current study, TiO2 thin film photocatalysts were designed by nanocrystal engineering and fabricated for degradation of the acetaminophen (ACE) in a photocatalytic reaction under UV light irradiation in batch and continuous systems. The photocatalyst was prepared by sputtering and then engineered by thermal treatment (annealing at 300℃ (T300) and 650℃ (T650)). The annealing effects on the crystallinity and photocatalytic activity of the TiO2 film were completely studied; it was found that annealing at higher temperatures increases the surface roughness and grain size which are favorable for photocatalytic activity due to the reduction in the recombination rate of photo-generated electron-hole pairs. For the continuous system, a flat plate reactor (FPR) was designed and manufactured. The photocatalytic performance was decreased with the increase of flow rate because the higher flow rate caused to form the thicker film of the liquid in the reactor and reduced the UV light received by photocatalyst. The reusability and durability of the samples after 6 h of photocatalytic reaction showed promising performance for the T650 sample (annealed samples in higher temperatures).  相似文献   
7.
采用气相色谱-质谱法,于2016年9月和12月对南京市2个典型地区大气中16种多环芳烃(PAHs)的质量浓度进行分析,并开展了PAHs组成特征、来源解析及人体健康风险评价研究。结果表明,工业区(六合区)和生活区(江宁区)大气(气态和可吸入颗粒态)中16种PAHs的质量浓度分别为914.82和712.27 ng/m~3,苯并[a]芘毒性等效浓度分别为274.1和309.84 ng/m~3,且呈现冬季高、秋季低的特征。比值法源解析结果表明,燃煤污染是六合区PAHs污染主要来源,而江宁区主要表现为交通污染。人体健康风险评价结果表明,六合区和江宁区人群通过大气吸入PAHs的超额致癌风险分别为5.17×10~(-5)和5.85×10~(-5),均略高于可接受水平10~(-6)。  相似文献   
8.
将两性(十二烷基二甲基甜菜碱)修饰磁化炭分别以质量分数0、1%和2%加入嘉陵江流域(川渝段)内苍溪(CX)、南部(NB)、嘉陵(JL)和合川(HC)沿岸土中,考察各混合土样对Cu^2+的等温吸附和热力学特征。结果表明:混合土样对Cu^2+的最大吸附量为58.36 mmol/kg~366.85 mmol/kg,添加等量两性磁化炭时各混合土样对Cu^2+吸附量表现为JL>NB>CX>HC的趋势,且添加比越高吸附能力越强。各混合土样对Cu^2+的吸附为自发、吸热和熵增的反应过程,对Cu^2+的吸附量与温度和pH值均呈正相关关系。当离子强度为0.1 mol/L时,各混合土样(除HC外)对Cu^2+的吸附量最大。  相似文献   
9.
Urbanization and mass movement of the population from rural areas and small cities to megacities have led to environmental, economic, and social problems in Iran. In dealing with these challenges, assessing resource and environmental carrying capacity (RECC) is considered an effective method to leverage space and capital to achieve sustainable development. This study aimed to rank the provincial RECC in Iran. Toward this purpose, environmental indices were generated from remotely sensed and statistical census data. Then, the provinces were scored in terms of environmental, economic, and infrastructural carrying capacities, and RECC using the mean variance analysis method. Results demonstrated that in most areas, there is no relationship between economic and infrastructural capacities and development. Statistically, a correlation coefficient of −0.53 between economic and environmental carrying capacities indicated excessive use of environmental capacities. Moreover, the spatial distribution pattern of environmental, economic, and infrastructural carrying capacity was entirely heterogeneous between the provinces; there was a northeast–southwest pattern in terms of infrastructural capacity and an economic pattern from north to south. The distribution pattern of RECC is most consistent with the environmental capacity, pointing at the high weight of the indicators of the RECC model. In conclusion, this research offers a new vision for policymakers and provides a theoretical and applicable framework for implementing sustainable strategies in land-use planning. It is recommended that the RECC concept and tools can be used not only for planning but also for measuring the efficiency of spatial development programs and establishing land balances in the region.  相似文献   
10.
Efficient and robust photocatalysts for environmental pollutants removal with outstanding stability have great significance. Herein, we report a kind of three dimensional (3D) photocatalyst presented as Z-scheme heterojunction, which combining TiO 2 and Zn x Cd 1- x S with graphene aerogel to contrast TiO 2 -Zn x Cd 1- x S graphene aerogel (TSGA, x = 0.5) through a moderate hydrothermal process. The as-prepared Z-scheme TSGA was used to remove aqueous Cr(VI) via a synergistic effect of adsorption and visible light photocatalysis. The adsorption equilibrium can be reached about 40 min, then after about 30 min irradiation under visible light (wavelength ( λ) > 420 nm) the removal rate of Cr(VI) almost reached 100%, which is much better than the performance of pristine TiO 2 and Zn 0.5 Cd 0.5 S, as well as TiO 2 graphene aerogel (TGA) and Zn 0.5 Cd 0.5 S graphene aerogel (SGA). The virulent Cr(VI) was reduced to Cr(III) with hypotoxicity after photocatalysis on TSGA, meanwhile the as-synthesized TSGA presented a good stability and reusability. The reduced graphene oxide (rGO) sheets between TiO 2 and Zn 0.5 Cd 0.5 S played a role as charge transfer mediator, promoting the photoinduced electrons transfer and photocatalysis ability of TSGA was enhanced significantly. Hence,such photocatalyst exhibits a potential application on removing heavy metals with high efficiency and stability from polluted aqueous environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号