首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   334篇
  国内免费   67篇
安全科学   10篇
废物处理   13篇
环保管理   2篇
综合类   489篇
基础理论   44篇
污染及防治   16篇
评价与监测   1篇
  2024年   6篇
  2023年   45篇
  2022年   63篇
  2021年   82篇
  2020年   76篇
  2019年   54篇
  2018年   39篇
  2017年   61篇
  2016年   43篇
  2015年   34篇
  2014年   24篇
  2013年   17篇
  2012年   18篇
  2011年   9篇
  2010年   3篇
  2006年   1篇
排序方式: 共有575条查询结果,搜索用时 15 毫秒
1.
将两性(十二烷基二甲基甜菜碱)修饰磁化炭分别以质量分数0、1%和2%加入嘉陵江流域(川渝段)内苍溪(CX)、南部(NB)、嘉陵(JL)和合川(HC)沿岸土中,考察各混合土样对Cu^2+的等温吸附和热力学特征。结果表明:混合土样对Cu^2+的最大吸附量为58.36 mmol/kg~366.85 mmol/kg,添加等量两性磁化炭时各混合土样对Cu^2+吸附量表现为JL>NB>CX>HC的趋势,且添加比越高吸附能力越强。各混合土样对Cu^2+的吸附为自发、吸热和熵增的反应过程,对Cu^2+的吸附量与温度和pH值均呈正相关关系。当离子强度为0.1 mol/L时,各混合土样(除HC外)对Cu^2+的吸附量最大。  相似文献   
2.
为定量评估生物炭对主粮作物产量的影响,收集了公开发表的116篇相关文献,共866对数据,采用Meta分析法定量分析了生物炭对我国主粮作物产量的影响及其影响因子,同时构建结构方程模型(SEM)进一步解释了因子间的交互关系.结果表明,与不施用生物炭相比,生物炭施用后可改善主粮田土壤理化性质,提高主粮作物产量,平均增产率为8.77%.其中,当生物炭pH为7~8时,平均增产率最大,可达26.49%;其C/N<60时,平均增产率为13.73%,显著高于C/N≥60的平均增产率.将生物炭施入酸性或中性土壤中,更能发挥其增产效应.当施炭量为10~20 t·hm-2时,小麦和玉米的平均增产率最大;施炭量为15~25 t·hm-2时,水稻平均增产率最大.但是,不同施炭水平的水稻增产率相近,可考虑损失部分产量,适当减施以兼顾经济效益.此外,生物炭增产效应会随施用年限增加而不断减弱,一般3 a后增产不显著.SEM表明生物炭施用量不仅直接影响主粮作物产量,还通过改善土壤肥力间接影响主粮作物产量,而生物炭C/N和pH仅通过改善土壤肥力影响主粮作物产量.因此,今后...  相似文献   
3.
生物炭作为一种绿色环保的功能材料因其在污水处理和污染土壤修复方面具有显著效果而受到极大关注.采用红外光谱、元素分析仪及微孔分析对不同温度(200、300、400、500和600℃)条件下制备的木屑和麦秆生物炭进行特性表征,并采用制备的生物炭净化石油污染土壤,分别考察了污染物性质、生物质原料和热解温度对其净化效果的影响.结果表明,随着热解温度的增高,生物炭芳香化程度增加,极性降低,微孔结构逐渐发育,表面积增大.加入生物炭33 d后,污染土壤中总石油烃及其组分烷烃的浓度比对照略有降低,而PAHs浓度下降显著.随着热解温度升高,2种生物炭对PAHs的吸附强度均逐渐增大,芳香度增高、表面积增大是强吸附的主要原因.2种生物炭在400℃及以下温度制备时对PAHs的吸附强度为:木屑生物炭>麦秆生物炭;而400℃以上温度制备的生物炭吸附强度则相反,即麦秆生物炭>木屑生物炭,说明生物炭原料对其吸附强度也具有显著影响.  相似文献   
4.
生物碳施加到土壤中可能会影响污染物的环境归趋,而吸附作用是其关键控制因素,为此,本研究考察了400、500和600℃下制备的玉米秸秆生物碳(分别记作CS400、CS500和CS600)和土壤性质对乙草胺吸附行为的影响.结果表明,生物碳和土壤对乙草胺的吸附等温线符合Freundlich模型(R2≥0.99).随着生物碳热解温度的升高(从CS400到CS600),生物碳吸附乙草胺的非线性指数n值减小且logKOC值增大,说明吸附非线性程度和吸附能力增强,这是因为生物碳炭化程度增强(H/C原子比减小),疏水性增强(O/C原子比减小)和比表面积增大而有利于对乙草胺的吸附,吸附机制以表面吸附为主(比如疏水作用、π-ρ EDA作用和孔填充作用).然而,土壤吸附乙草胺的n值(0.95)接近1.0,说明该吸附作用几乎是线性吸附,以分配作用机制为主.3种生物碳对乙草胺的吸附能力都高于土壤,特别是CS600对乙草胺的吸附能力(logKoc)比土壤及文献报道的土壤和沉积物高一个数量及以上,说明生物碳可能会有效保留土壤中的乙草胺而降低其迁移性.  相似文献   
5.
生物炭对重污染土壤镉形态及油菜吸收镉的影响   总被引:8,自引:0,他引:8  
为了解不同种类和用量的生物炭对土壤镉形态及油菜吸收镉的影响,通过室外盆栽试验,以湖南某冶炼区周边重镉污染土壤为供试土壤,湘油27号为供试作物,于油菜移栽前7d分别添加w为0.1%和1%的竹炭和柠条炭,分析土壤镉形态和成熟期油菜各器官镉含量.结果表明,添加生物炭能降低土壤镉的有效性和油菜各器官中镉含量.柠条炭降低油菜吸收累积镉的效果比竹炭更明显,且随着生物炭量的增加阻控效果更明显.相比于对照组,施用生物炭后土壤中w(可交换态镉)最大可降低16.64%;油菜根部、茎秆、油荚和籽粒w(镉)最大可分别降低34.06% 、39.74%、33.15%和49.81%.综合结果表明,添加w=1%柠条炭处理组处理效果最佳.  相似文献   
6.
合成了一种高吸附容量的磁性生物炭负载Mg-Fe水滑石复合材料(L-BC),并用于去除水中的Cd2+和Ni2+。表征结果表明,采用浸渍联合热解法成功制备了磁性生物炭(M-BC),水热合成法成功地将Mg-Fe水滑石负载在M-BC上。动力学研究结果表明,Cd2+和Ni2+吸附符合伪二级动力学模型,化学吸附为速率控制步骤。等温吸附研究结果表明,L-BC对Cd2+和Ni2+的吸附符合Langmuir模型,为单分子层化学吸附,最大吸附量分别为263.156 mg/g和43.291 mg/g。吸附机理主要为Mg-Fe水滑石层间CO32-和表面羟基与Cd2+和Ni2+产生表面共沉淀。L-BC具有良好的吸附和重复利用性能,是一种很有前景的去除Cd2+和Ni2+的吸附材料。  相似文献   
7.
以玉米秸秆为原材料,在350℃下采用限氧裂解法制备了4种粒径的生物碳(BC-9.31、BC-20.26、BC-71.07、BC-101.90,数字代表样品的中值径,单位μm),对比研究了15℃、25℃、35℃、45℃下生物碳对锶的吸附行为,旨在阐明生物碳粒径和溶液温度对生物碳吸附锶的耦合影响。结果表明:生物碳粒径和溶液温度对等温吸附曲线的基本特征影响较小,Freundlich模型能较好地拟合吸附过程(R2=0.915~0.997,N=0.513~0.745);生物碳吸附锶是以熵驱动为主的物理吸附过程,熵变ΔS为75.66~99.43 J/(mol·K),焓变ΔH为18.18~25.84 k J/mol;生物碳对锶的吸附性能大体与溶液温度呈正相关,与颗粒粒径呈负相关,同时颗粒粒径与溶液温度存在耦合影响;生物碳粒径越小,锶吸附过程受温度影响越小;温度越高,锶吸附受粒径影响越小。  相似文献   
8.
生物炭修复Cd,Pb污染土壤的研究进展   总被引:8,自引:0,他引:8       下载免费PDF全文
杨璋梅  方战强 《化工环保》2014,34(6):525-531
随着矿产开采、冶炼等工业活动以及污水灌溉、施用污泥和劣质化肥等农业活动的进行,Cd,Pb等有害重金属不断进入农业环境中,对农田、菜地等造成污染。生物炭作为重要的土壤改良剂,在对Cd,Pb污染土壤的修复中表现出巨大的潜力。从生物炭的特性及制备、修复效果及其影响因素、修复机理等方面,对近年来国内外有关生物炭修复Cd,Pb污染土壤的研究成果和现状进行了总结,并对生物炭修复Cd,Pb污染土壤的发展前景和未来研究方向进行了展望。  相似文献   
9.
以小麦秸秆为原材料,在300℃下缺氧裂解3、6、8 h制备生物炭,比较了3种生物炭的产率、pH值、灰分以及C、H、N元素含量,表征了300℃、6 h生物炭的表面形态,并用其作为修复材料,对大港油田的石油污染土壤进行修复。结果表明,随裂解时间的延长,生物炭产率下降,pH值升高,灰分含量增加,H/C值下降,但产率、pH值、灰分和H/C值都是从3h到6h差异显著,6h到8h差异不显著。C元素含量先升高后下降。石油污染土壤经生物炭修复14 d和28 d后,总石油烃降解率分别为45.48%和46.88%,均显著高于对照组。修复14 d后土壤中的萘、苊、苯并[a]蒽、屈、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、茚并[1,2,3-cd]芘也都有不同程度的下降,其中苯并[a]芘含量下降幅度达98.18%,其他几种PAH的降解率也都高于对照组,28 d后这些PAH的含量又有上升趋势。这说明小麦秸秆裂解时间对生物炭的性质有影响;300℃、6 h生物炭可以用来修复石油污染的土壤。  相似文献   
10.
为了解人工合成药物在生物炭上的吸附动力学特征及其浓度效应的影响,选择卡马西平(CBZ)为目标污染物。探讨不同初始质量浓度(2、4、25、50 mg·L~(-1))在不同裂解温度(200、300、500℃)下制备的生物炭上的吸附动力学特征。结果表明,双室一级动力学模型可以精确地描述CBZ在生物炭上的吸附动力学特征。CBZ的快室吸附对总体吸附的贡献随初始浓度的增大而减小,而慢室吸附贡献则增大。π-π作用可能对CBZ的吸附贡献较大。孔隙填充可以描述慢室吸附过程,可能是吸附速率的控制环节。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号