排序方式: 共有10条查询结果,搜索用时 46 毫秒
1
1.
2.
3.
Shuangxin Shi Yeru Huang Li Zhou Wenlong Yang Liang Dong Lifei Zhang Xiulan Zhang 《Environmental monitoring and assessment》2013,185(6):4887-4896
Urban road dust samples were collected from different land use areas in Suzhou, Wuxi, and Nantong, Yangtze River Delta, China. The dust samples were analyzed for the levels and compositional profiles of deca-polybrominated diphenyl ethers (Deca-BDE), 22 organochlorine pesticides (OCPs), and 16 polycyclic aromatic hydrocarbons (PAHs). The levels of BDE-209, ∑OCPs, and ∑PAHs in samples ranged from 4.01–1,439 μg/kg, 3.15–615 μg/kg, and 2.24–58.2 mg/kg, respectively. PAHs were the predominant target compounds in road dust samples, comprising on average 97.7 % of total compounds. The spatial gradient of the pollutants (commercial/residential area> industrial area > urban park concentrations) was observed in the present study. The results indicated that the levels of BDE-209, OCPs, and PAHs observed in road dust were usually linked to anthropogenic activities in the urban environment. In addition, there might be a reflection of current usage or emissions of OCPs in urban environment. 相似文献
4.
Concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 28 surface soils samples collected from Urumqi, northwest China, for examination of distributions, source contributions, and potential health effects. The results indicated that the sum of 16 PAHs concentration ranged from 331 to 15,799 μg?kg?1 (dw) in soils, with a mean of 5,018?±?4,896 μg?kg?1 (n?=?28). The sum of seven carPAHs concentration ranged from 4 to 1,879 μg?kg?1 (dw; n?=?28). The highest ∑PAHs concentrations were found at roadsides and industrial sites, followed by those at parks, rural areas, and business/residential areas. Coal combustion, emission of diesel and gasoline from vehicles, and petroleum source were four sources of PAHs as determined by PMF analysis, which contributed 51.19, 19.02, 18.35, and 11.42 % to the PAH sources, respectively. Excellent coefficients of correlation between the measured and predicted PAHs concentrations suggested that the PMF model was very effective to estimate sources of PAHs in soils. Incremental lifetime cancer risk values at the 95th percentile due to human exposure to surface soils PAHs in Urumqi were 2.02?×?10?6 for children and 2.72?×?10?5 for adults. The results suggested that the current PAHs levels in soils from Urumqi were pervasive and moderately carcinogenic to children and adults. 相似文献
5.
6.
植被覆盖指数(NDVI)时间序列数据集包含地表植被的长势、生长周期、时空变化等信息,其拟合重建结果可应用于物候信息提取、生态质量评价、人类活动扰动识别、覆被变化动态监测等方面。基于TIMESAT软件,选取物候参数提取和扰动识别2个应用场景,结合地面站点数据和Jacknife法模拟数据,对比分析非对称高斯函数拟合法(AG法)、双Logistic函数拟合法(D-L法)和Savitzky-Golay滤波法(S-G法)3种方法的拟合效果。结果表明:(1)3种方法拟合重建后提取的生长开始时间(SOS)、生长结束时间(EOS)、生长周期(LOS)等物候参数接近站点数据,AG法和D-L法保持NDVI时序曲线整体变化特征的能力较强,提取的SOS和EOS更接近站点数据;(2)人类活动扰动识别应用场景中,S-G法在滤波时能够最大限度地保留时序曲线细节变化,恢复速率相关系数达到0.618,回归估计标准差低于AG法和D-L法,因此识别精度最优。 相似文献
7.
采用遥感分布式面源污染评估模型(DPeRS),对2018年黄河流域(甘肃段)面源污染空间分布特征进行分析,具体包括多类型污染量产排特征解析和流域优先管控单元识别。结果表明,污染量上,2018年黄河流域(甘肃段)总氮(TN)、总磷(TP)、氨氮(NH3-N)、化学需氧量(CODCr)的面源污染排放负荷分别为65.6,11.8,19.1和77.2 kg/km2,入河量分别为836.7,33.3,220.2和1 353.3 t;空间分布上,氮型(TN和NH3-N)排放负荷高值区主要分布在流域中部和东部局部地区,流域大部分地区TP排放负荷均较高,CODCr面源污染排放负荷高值区分布较为零散。与排放负荷相比,黄河流域(甘肃段)面源污染入河负荷并不突出,这与该地区水资源量少有密切关系。筛选出黄河流域(甘肃段)面源污染优先控制单元15个,面积占比为85.2%,I类优控单元主要分布在庆阳市、天水市、兰州市和白银市等地区,II类优控单元主要分布在甘南藏族自治州,且TN、TP、NH3-N和CODCr面源污染优控单元识别结果的平均精度达到80%。 相似文献
8.
研究了大气中低分子量酮类化合物的气相色谱测定方法 ,进行了线性范围、精密度和准确度实验。结果表明 ,该方法具有简便快捷、准确灵敏的特点 ,适合于大气污染事故应急监测 相似文献
9.
采用DPeRS模型对淮河流域氮、磷面源污染空间特征进行遥感像元尺度解析,并对"十三五"《重点流域水污染防治规划》中划定的淮河流域235个控制单元进行面源污染优先控制单元分析。结果表明,淮河流域2016年TN和TP面源污染排放量分别为44. 99和2. 44万t,入河量分别为27. 72和1. 27万t;空间分布上,淮河流域的东部和南部氮、磷污染程度较为显著,北部污染程度较轻;农田径流型是淮河流域最主要的氮、磷面源污染源,均占到总污染量90%以上,是该流域氮、磷面源污染防治优先控制的污染源,对于TN指标次要影响类型为城镇地表径流,对于TP指标次要影响类型为畜禽养殖;筛选出淮河流域TN和TP面源污染优先控制单元分别为164和185个,面积占比分别为75. 3%和85. 0%。 相似文献
10.
1