首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   5篇
基础理论   1篇
评价与监测   7篇
  2023年   1篇
  2022年   5篇
  2021年   1篇
  2020年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
结合2018年10月15—20日国控站点监测数据、气象资料及激光雷达走航观测结果,对江淮地区一次重度污染过程进行了分析。利用拉格朗日粒子扩散模型和拉格朗日混合单粒子轨迹模型定性分析了区域污染来源,分别基于激光雷达和空气站实测数据提出了外来源占比的估算方法,结合嵌套网格空气质量预报模式(NAQPMS)的源解析结果,对比分析了外来源占比。以淮北市为例,结合NAQPMS和单颗粒气溶胶质谱的PM2.5在线源解析结果,对比分析此次污染过程的行业来源。结果表明,本地污染累积时段,主要以燃煤和机动车尾气混合源为主(占比>70%);受北方污染输送时段,机动尾气占比显著升高,从19.4%(16日00:00)升至66.7%(17日11:00),淮北市、蚌埠市、合肥市3个城市污染物外来输送占比分别为52.2%~70.6%、48.8%~58.8%、41.5%~59.0%。  相似文献   
2.
为了研究江淮地区典型城市的O3污染来源,该文对一次典型O3污染过程(2020年9月1—10日)开展了多参数的监测分析,综合多种方法分析了江淮区域的O3和挥发性有机物(VOCs)污染特征及其来源.结果表明,江淮地区城市(合肥、宿州、阜阳、滁州和淮南)O3浓度的日变化均呈现出非典型的“双峰”特征(日间和夜间均有污染峰值).污染期间VOCs的污染程度由高到低分别为合肥、淮南、滁州、宿州和阜阳;其中,机动车排放源为该区域城市VOCs污染贡献最大的来源,贡献率分别高达44.1%、36.8%、37.8%、38.7%和40.5%;其次是燃烧源(18.9%—21.3%)、溶剂使用源(12.4%—21.3%)、工业源(13.0%—15.3%)和天然源(除滁州为13.9%外,其余为8.0%左右).O3生成潜势(OFP)分析表明,除OVOCs对淮南市OFP贡献较高外,其余城市中烯烃、芳香烃等组分对OFP贡献最高,OFP由高到低分别为合肥(284.9μg·m-3)、淮南(167....  相似文献   
3.
基于2016—2018年安徽省68个国控环境空气质量自动监测站点的臭氧(O_3)监测数据,研究分析了安徽省O_3污染特征及其与气象因子的相关性。结果表明:安徽省O_3污染程度呈现逐年加重趋势,并有显著的季节和月度变化特征。2016—2018年,各年度单月O_3日最大8小时滑动平均质量浓度第90百分位数的最大值分别出现在9月、5月、6月。O_3日变化趋势为典型的单峰形,各年度最低值出现在晨间07:00左右,最高值则是在15:00—16:00。全省O_3浓度总体上呈现出北高南低的空间特征。温度、相对湿度与O_3浓度分别呈现显著正相关、负相关,但在不同季节存在一定差异,其中,春秋季温度与O_3浓度的相关性好于夏冬季,夏季相对湿度与O_3浓度的相关性最为显著。O_3浓度在平均风速为2.1~2.2 m/s时更易出现超标。中部和北部城市在东南风的作用下易出现O_3超标并达到O_3浓度高值,而南部地区在风向为西风时更容易出现O_3超标。  相似文献   
4.
为研究烟花爆竹集中燃放对江淮地区环境空气质量的影响,基于近地面常规空气质量参数、颗粒物组分参数、激光雷达监测等数据资料,系统分析了2022年春节期间烟花爆竹燃放对安徽省主要城市和县域环境空气质量的影响。研究表明,2022年春节期间安徽省环境空气质量总体好于2019—2021年平均水平,但受局部烟花爆竹燃放和不利气象条件(低温、小风、高湿、静稳)的叠加影响,产生的环境效应(颗粒物浓度峰值较高、影响范围较广)依然较为严重。重点区域(合肥和淮北)大气颗粒物组分中硝酸根离子(NO^(-)_(3))、硫酸根离子(SO ^(2-)_(4))和铵根离子(NH_(4)^(+))等主要离子占比有所下降(降幅为3.4%~12.1%),烟花爆竹燃放示踪组分(钾离子、氯离子、金属元素等)均出现了明显的峰值过程,且金属元素浓度占比涨幅明显高于水溶性离子。烟花爆竹燃放对颗粒物的垂直分布和传输沉降过程产生显著影响,燃放排放主要以球形细颗粒物为主;不利气象条件下的本地烟花爆竹燃放叠加周边污染传输影响是造成主城区空气质量显著恶化的主要原因。基于ρ(PM_(2.5))/ρ(CO)的比值法估算,集中燃放时段,烟花爆竹燃放对城建区PM_(2.5)质量浓度的绝对贡献范围为4~701μg/m^(3),平均值达159μg/m^(3);烟花爆竹燃放对PM_(2.5)质量浓度的贡献量和贡献率呈现皖中>皖北>皖南的分布特征。主城区的禁燃措施对于春节期间空气质量的改善起到了关键作用,同时需要加强城市周边区域的烟花爆竹燃放管控措施。  相似文献   
5.
基于2021年12月1日-2022年2月28日合肥市细颗粒物(PM_(2.5))及其水溶性离子连续观测数据,分析了合肥市冬季PM_(2.5)中水溶性离子化学特征以及不同污染程度下水溶性离子化学特征。结果表明:采样期间合肥市PM_(2.5)污染较重,不同污染程度下PM_(2.5)浓度差异较大,中度及以上污染天的ρ(PM_(2.5))平均值分别是清洁天和轻度污染天的2.8和1.3倍。二次水溶性无机离子[硝酸根离子(NO_(3)^(-))、铵根离子(NH+4)和硫酸根离子(SO_(2)-4),简称SNA]是合肥市PM_(2.5)的重要组成部分,随着污染程度的加重,PM_(2.5)二次生成比例随之下降。NH+4是合肥市水溶性离子中中和能力最强的离子,易与NO_(3)^(-)和SO_(2)-4结合分别形成NH_(4)NO_(3)和(NH_(4))_(2)SO_(4)。合肥市SO_(2)和NO_(2)均易发生二次转化,且SO_(2)较NO_(2)更容易发生二次转化。钙离子(Ca^(2+))和镁离子(Mg^(2+))相关性较高,说明合肥市PM_(2.5)可能受扬尘影响较大;钾离子(K^(+))是生物质燃烧的指示离子,氯离子(Cl^(-))与K^(+)相关性较好,说明合肥市PM_(2.5)组分中的Cl^(-)和K^(+)主要来自生物质燃烧。PM_(2.5)中水溶性离子受降水和温度影响较大。  相似文献   
6.
综合利用环境空气质量常规监测、挥发性有机物(VOCs)在线监测,以及后向轨迹聚类分析、权重潜在源区分析和正交矩阵因子分解法等多种监测分析方法,基于合肥市经历的一次典型臭氧(O3)污染过程(2020年9月1—10日),系统分析了合肥市O3污染的典型特征及成因。结果显示,此次污染过程的O3小时平均浓度高达96 μg/m3,且O3浓度波动较大,在9月6日13:00达到了224 μg/m3,呈现出快速生成、快速消耗的污染特征,并在夜间呈现出非典型的二次峰值过程。污染期间,合肥市基本处于VOCs控制区,芳香烃对O3生成潜势的贡献最大(45.2%),其次是烷烃(31.8%)和烯烃(21.5%);污染阶段的VOCs主要来自机动车排放源(44.1%)、燃烧源(21.3%)、工业源(15.3%)、溶剂使用源(12.4%)和天然源(6.9%),累积阶段和污染阶段均受机动车尾气排放和溶剂使用的影响较大。此外,台风外围下沉气流和高温、低湿、低风速等气象条件是引发此次O3污染过程的主要外因,而合肥市周边的高污染区域则是此次O3污染过程的潜在外部源区。  相似文献   
7.
综合前后向轨迹聚类分析、激光雷达探测传输量及典型案例,系统分析2018-2020年冬季合肥市主要传输型重污染过程,揭示合肥大气污染输送通道的主要特征和污染期间PM2.5的传输通量。结果表明:合肥市冬季污染主要输入通道分别为京津冀-山东西部-安徽北部-合肥(35%)、山东南部-安徽北部-南京-合肥(26%)、内蒙古-河北-山东-江苏中部-合肥(24%)、内蒙古-山西-河北南部-河南-安徽北部-合肥(15%);主要输出通道为合肥-六安或安庆-湖北-江西(54%)、合肥-安徽北部-江苏北部(18%)、合肥-河南南部-陕西(17%)、合肥-上海或浙江-海上(11%)。对激光雷达监测结果采用像素检测法分析,结果表明2018-2020年污染传输过程的平均传输通量分别可达20.3、33.7、19.5 t/h,年际差异较大。外源传输通量较高时的主导风向为偏北风,并且风速为3.1 m/s左右。合肥市处于安徽省自北向南污染传输通道的中游区域,受上游城市传输影响显著,典型污染传输型的平均传输通量可比上游城市(淮北市)低57.6%,比下游城市(池州市)高25.5%,且污染过程中常伴随PM2.5的二次生成,主要生成成分为NH4+与NO3-等。  相似文献   
8.
利用滁州市环境空气质量监测数据和气象观测数据,分析了滁州市O3污染基本特征,并着重分析了一次连续O3污染过程中气象因素、VOCs以及其他污染物对于O3浓度的影响。结果表明:滁州市环境空气污染类型正由"PM2.5型"向"PM2.5和O3混合型"转变,O3污染程度呈现加重趋势,污染持续时间有所拉长。9月4—9日一次连续O3污染过程中O3呈单峰状;受到光化学生成和区域传输共同影响,峰值时气温大多在30℃以上,相对湿度较小,风速大多处于小风区(WS≤1 m/s),也有部分处于风速较大区域(WS>3 m/s);VOCs/NOx比值法和O3/NOx比值法均反映此次连续O3污染为VOCs控制;体积分数较大的VOCs物种主要为烷烃,其中单个体积分数最大的物种是乙烷;烯烃是对O3生成贡献最大的关键活性组分,对O3生成潜势的贡献为53.5%,控制1-戊烯、反2-戊烯、异戊二烯、间/对二甲苯等物种可以有效控制光化学生成对此次O3污染过程的影响。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号