首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   4篇
  国内免费   3篇
综合类   10篇
评价与监测   19篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2014年   3篇
  2013年   7篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
利用2013-2017年京津冀区域13个城市PM2.5监测数据,综合探讨了该区域PM2.5浓度的时空变化特征。结果表明:京津冀区域PM2.5污染整体较重,但治理成效显著,2013-2017年区域PM2.5年均质量浓度分别为106、93、77、71、64 μg/m3,完成《大气污染防治行动计划》PM2.5浓度下降25%左右的目标;13个城市PM2.5浓度各百分位数总体呈现下降趋势,且随百分位数增大而下降速率加大,PM2.5年均质量浓度平均每年下降10.6 μg/m3,污染严重的太行山沿线城市邢台、石家庄、邯郸3个城市平均每年分别下降20.3、16.1、13.9 μg/m3;京津冀区域PM2.5重度污染天数比例分别为19.9%、16.6%、9.5%、9.0%、7.0%,呈下降趋势。2013-2017年京津冀区域PM2.5平均质量浓度与非重度污染天相比升高19 μg/m3,PM2.5重度污染天平均质量浓度较非重度污染天时高244.4%。  相似文献   
2.
针对2018年3月9—15日京津冀地区的一次空气重污染过程,进行了基于地基颗粒物激光雷达组网的星载-地基联合观测分析。颗粒物激光雷达观测到污染前期为局地污染累积过程,中期有明显的污染物区域传输过程,北京受太行山沿线城市污染输送影响较大。风廓线激光雷达观测结果表明:此次污染过程近地面主要为偏南风且风力较弱,冷空气到来时风向转为较强东北风,导致污染消散。微波辐射计观测到保定在污染过程中出现持续6 d的逆温层,同时在污染过程中近地面相对湿度较高,逆温层被打破后污染开始消散。在污染过程的各个阶段中,污染团的空间分布与变化特征均被很好地反映出来,可见地天联合观测对污染物的累积与输送研究有较大的意义,能对京津冀及周边地区的大气污染联防联控提供有力支持。  相似文献   
3.
分析了2017—2019年中国337城市O_3污染特征,结果表明:2017—2019年全国O_3第20~70百分位浓度逐年增幅相对稳定,第80~95百分位浓度逐年上升速率最快,平均每年升高5.5μg/m~3。全国O_3超标以轻度污染为主,主要集中在5—9月,占全年O_3超标天数的85.3%;"2+26"城市、汾渭平原交界、长三角、苏皖鲁豫交界O_3超标天数占全国63.9%,"2+26"城市O_3污染最为严重,平均每城市超标71 d。2017—2019年O_3单因子超标分别损失全国空气质量优良天数比例为4.5个百分点、4.9个百分点和7.4个百分点,2019年9月O_3单因子超标天数比例为18.8个百分点,单月使全年优良天数减少1.2个百分点。天津、河北、山东、北京、河南、山西、江苏的O_3污染相对较重,天津市发生O_3污染的关键温度为26~34℃,风速为2.0~2.5 m/s,相对湿度为40%~80%,降水明显减少和温度偏高是导致2019年O_3浓度升高的重要气象因素。  相似文献   
4.
2013年1月京津冀地区强雾霾频发成因初探   总被引:5,自引:0,他引:5  
基于2001-2013年的气象观测数据和环境空气质量监测数据,针对京津冀地区1月同期的雾霾天数、能见度、环境空气污染物浓度等展开分析,结果表明:2013年1月京津冀地区平均雾霾天数发生了21.7 d;污染物浓度超标严重,高浓度的颗粒物成为强雾霾频发的重要原因,PM10月均浓度为0.317 mg/m3,PM2.5为0.219 mg/m3;1月份京津冀地区气象要素表现为地面风速小、相对湿度高、大气层结稳定,更加促进大气污染物累积,并有利于颗粒物吸湿增长,致使空气质量恶化,强雾霾事件频发。  相似文献   
5.
全国大气背景地区黑碳浓度特征   总被引:1,自引:0,他引:1  
分析了2015年14个背景站黑碳浓度水平及分布规律,结果表明:我国背景地区黑碳小时浓度均值呈现明显的对数正态分布特征,14个背景站880 nm波长时年均质量浓度为88.7~1 487.6 ng/m~3,小时最大峰值为685.0~13 731.0 ng/m~3,长岛和衡山相对较高;24 h日浓度变化基本呈现"单峰"状,但峰值出现时刻有所不同;工作日和周末的浓度变化趋势基本相似,但浓度高低与所在区域生产生活方式不同而有所差异。初步探讨了风速和风向与浓度污染水平的关系,相对风速而言,风向对黑碳的浓度影响较大,后向轨迹结果也印证了风向的影响。  相似文献   
6.
针对无锡地区2013年11月6—13日经历的灰霾污染和清洁过程,采用地基遥感激光雷达对空气中的气溶胶颗粒物垂直分布进行垂直探测,发现污染时段气溶胶颗粒物主要积聚在1.8 km以下,消光系数的日均值统计表明,从近地面至高空1.5 km,颗粒物产生的峰值消光系数稳定在0.2 km~(-1);而清洁时段,由于垂直扩散条件改善,颗粒物随高度增加明显减少,1.5 km处的消光系数不足0.05 km~(-1)。同时发现污染时段中,近地面PM_(10)、PM_(2.5)、碳黑(BC)的平均浓度分别是清洁时段的2.48、2.76、3.66倍;大气氧化剂(O3和NO_x的总和)平均值水平是清洁时段的1.73倍。气象条件分析发现,锋面的移动使大气水平、垂直对流运动加剧,污染物得以迅速扩散,空气质量转好,这也是此次污染清除的主要原因。  相似文献   
7.
试点城市O3浓度特征分析   总被引:8,自引:7,他引:1  
利用2009年O3试点城市的03监测数据,分析了北京、天津、上海、青岛、沈阳和广东的03浓度变化特征,统计了年超标情况,并结合气象要素数据分析了其对03浓度的影响.结果表明,不同城市各点位间03浓度变化趋势基本一致,但因点位类型不同,浓度存在差异;O3浓度呈单峰型日变化,在13:00-15:00出现最大值,6:00-7:00出现最小值;O3超标主要集中在4-8月份,广州和北京超标现象较多;O3浓度受温度、降水、风速和风向等气象要素影响较大.  相似文献   
8.
对2005年北京大气中异戊二烯进行了一年的观测分析。结果表明,异戊二烯体积分数年平均值为0.58×10-9,月平均值为0.1×10-9~1.8×10-9,7月最高,1月最低。春、秋、冬三季,异戊二烯日变化形式呈三峰形,分别在14:00、18:00、02:00;18:00、02:00、08:00;02:00、10:00、16:00出现峰值;夏季异戊二烯体积分数日变化呈现白天高夜晚低且在14:00出现峰值。夏季异戊二烯源排放主要由生物排放控制,其日变化形式受温度、辐射影响大;春季和秋季异戊二烯源排放受汽车尾气和生物排放共同控制,其日变化形式受汽车尾气影响大,温度、辐射也有一定影响;冬季异戊二烯源排放主要由汽车尾气控制,其日变化形式主要受汽车尾气影响。不同季节北京大气中的异戊二烯体积分数日变化形式与PM2.5浓度日变化形式大致相同。  相似文献   
9.
2006─2010年环保重点城市主要污染物浓度变化特征   总被引:13,自引:6,他引:7  
利用2006─2010年全国环保重点城市的空气质量日报数据,分析了大气ρ(SO2)、ρ(NO2)和ρ(PM10)的变化特征.结果表明:从年际变化看,ρ(SO2)和ρ(PM10)呈下降趋势,ρ(NO2)变化不显著.从季节变化看,ρ(SO2)、ρ(NO2)和ρ(PM10)均呈冬季高、夏季低的特征.从浓度谱分布看,全国大气中ρ(SO2)、ρ(NO2)和ρ(PM10)分别集中在0~0.150、0~0.100和0~0.250 mgm3范围内,ρ(SO2)和ρ(PM10)谱峰区间逐渐向低浓度范围偏移,高浓度事件逐渐减少,表明SO2和PM10污染得到较明显的控制,而ρ(NO2)谱峰变化不大.从浓度变化看,山西ρ(SO2)、ρ(NO2)和ρ(PM10)下降最明显,年变化率分别为-11.2、-3.6和-14.2μgm3;青海ρ(SO2)、山东ρ(NO2)和ρ(PM10)的上升趋势最明显,年变化率分别为4.4、2.7和4.5μgm3.  相似文献   
10.
京津冀地区城市臭氧污染趋势及原因探讨   总被引:1,自引:0,他引:1  
采用Kolmogorov-Zurbenko(KZ)滤波分析了2013~2018年京津冀地区13个城市的臭氧最大日8h滑动平均(O3-8h)序列,评估污染趋势并探讨原因.KZ滤波分离出的O3-8h短期、季节和长期等3个分量分别占原始序列总方差的32.7%、63.9%和3.4%,各分量之间相互独立;以滤除了中短期过程影响的长期分量进行比较,京津冀地区远高于柏林、巴黎和伦敦等欧洲城市,与美国洛杉矶20世纪90年代初和最近4年状况相当,普遍低于上海和南京等长三角主要城市.但是,2013~2018年京津冀地区各城市臭氧污染加剧显著,长期分量升高速率达2.31~7.12 μg·(m3·a)-1,均值为4.97 μg·(m3·a)-1,快于长三角地区.拟合结果提示,臭氧浓度升高受气象条件影响不大(贡献比均值约为9.6%),主要由大气污染排放变化造成(90.4%),将该排放变化拆分为PM2.5下降和臭氧前体物排放变化两项,其贡献比均值分别是27.3%和63.1%,其中北京-廊坊-天津城市带PM2.5下降对臭氧升高贡献较大,分别为50.8%、32.5%和36.7%,衡水则达到48.6%.PM2.5浓度降低已成为北京、衡水等地臭氧升高的最关键因素,这意味着需进一步减少前体物排放,以抵消PM2.5降低导致臭氧增加的反作用.需要指出,该结果尚待实验和模型模拟验证.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号