首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
  国内免费   10篇
废物处理   2篇
环保管理   1篇
综合类   14篇
基础理论   2篇
污染及防治   3篇
评价与监测   2篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2014年   8篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
广州城市污泥中重金属的存在特征及其农用生态风险评价   总被引:23,自引:6,他引:17  
分析了广州7种城市污泥中Zn、Cu、Pb、Cr、Mn、Ni的含量,研究了其中5种污泥中重金属的形态特征,并利用地累积指数(Igeo)和潜在生态危害指数法(RI)对污泥农用过程中重金属的潜在生态风险进行了综合性评价. 结果表明,广州不同来源城市污泥中Cu、Zn、Mn、Ni含量较高,变化幅度较大,而Pb、Cr含量较低. 除一种污泥中Cu超标外,其他重金属基本符合国家农用控制标准(GB18918-2002),但所有污泥中重金属含量都超过珠江三角洲耕地土壤均值.不同重金属在不同污泥中的形态分布差异较大. 其中,含工业污水污泥中Cu、Cr还原态占很大的比例,Pb、Fe主要以还原态和残渣态存在;生活污水污泥中重金属主要以可氧化态和残渣态存在,酸可交换态中Mn的比例较高,易还原态中Zn的比例较高;5种污泥中Cu、Zn、Mn潜在迁移性最强.Igeo和RI评价结果表明,污泥中Cu、Zn、Mn是潜在的强生态风险元素,污泥在农用过程中具有一定生态风险性. Igeo和RI用于污泥农用过程中重金属的生态风险评价是可行的,与其它评价方法相比较, RI能更好地反映污泥中重金属对生态环境的综合影响.  相似文献   
2.
分析赤泥、膨润土和煤粉的理化性质,并在此基础上烧制赤泥陶粒。考察不同发泡剂煤粉掺量下所烧制陶粒的烧胀性能。采用热性质分析、矿物分析和红外光谱等手段分析陶粒样品,研究煤粉的掺量和烧结温度对陶粒烧胀过程的影响以及赤泥陶粒的烧胀机理。结果表明:烧结温度为1 000℃时,随着煤粉掺量的增加,赤泥陶粒的显气孔率和吸水率升高,而体积密度和抗压强度降低;煤粉掺量为30%时,赤泥陶粒显气孔率45.13%,体积密度0.131 g·cm-3,吸水率39.0%,抗压强度14.7 MPa;掺入煤粉后赤泥陶粒生料有机组分烧失量增加,熔融温度降低,烧胀过程中还原性气氛增强;烧结温度升高能够促进易熔融矿物铁橄榄石的生成,提高陶粒的烧胀性能。  相似文献   
3.
城市污水污泥中PCBs的分析及其QA/QC研究   总被引:6,自引:0,他引:6  
采用正己烷/丙酮混合萃取剂索氏提取污泥,浓硫酸洗涤和硅胶层析柱净化分离出纯净的PCBs,以毛细管GC-ECD和内标法对PCBs定量,并进行了QA/QC研究.以实际城市污水污泥作为加标基质,方法的检测限为0·92—2·82ng·g-1(干重),19种PCBs同族体的回收率为54·2—140·6%,相对标准偏差为6·5—15·3%,满足US EPA对PCBs回收率的要求.经过3次平行分析,城市污水污泥中含有12种PCBs,PCBs总量的平均值为115·73ng·g-1(干重),相对标准偏差为9·57%.  相似文献   
4.
持久性有机污染物(POPs)的环境问题与研究进展   总被引:39,自引:0,他引:39  
对持久性有机污染物(persistentorganicpollutants:POPs)的定义、来源和特征进行了介绍。阐述了POPs对环境安全性构成威胁的原因。分析了持久性有机污染物,特别是12类优先控制的"dirtydozen"的环境污染状况,并分析了这些物质在全球大气、水体和土壤中存在的量和来源。这些物质在不同生物体内的浓度存在差异,反映出它们在食物链上的生物累积和放大,也加剧了对环境和人体的毒害作用。总结回顾了有关POPs的相关基础研究,并对将来继续深入研究和对环境监测的指导意义进行了展望。  相似文献   
5.
厌氧铁氨氧化(ammonium oxidation coupling with iron reduction,Feammox)反应是一种在厌氧条件下,由厌氧铁氨氧化菌驱动,以三价铁为电子受体,氧化氨氮的生物化学途径,它可以用于去除水体中的氨氮.为提高厌氧铁氨氧化菌对氨氮废水处理效果,采用"氢氧化钠共沉淀-溶胶-凝胶"法制备粒径为1~5mm的磁性壳聚糖凝胶球(magnetic chitosan hydrogel beads,MCHBs),将厌氧铁氨氧化菌固定,研究其对废水中氨氮去除效果和影响因素,并与游离厌氧铁氨氧化菌对废水氨氮去除效率作对比.制备的MCHBs进行X射线衍射(XRD)和振动样品磁强(VSM)等表征分析.结果表明,MCHBs为铁磁性、结晶度高,饱和磁化强度达29.46 emu·g~(-1).MCHBs固定厌氧铁氨氧化菌比游离菌具有更高的氨氧化和铁还原速率,平均增幅为42.96%和20.75%,以MCHBs(1~2 mm)固定厌氧铁氨氧化菌的效果最显著(P0.05).进一步研究发现,不适宜氨氮浓度、温度和pH下,MCHBs(1~2 mm)固定厌氧铁氨氧化菌氧化氨氮的能力均比游离菌高.初始氨氮浓度60.00 mg·L~(-1)、温度25℃和pH 4.50时,厌氧铁氨氧化效果较好,主要产物为硝态氮和二价铁,16 d时MCHBs(1~2 mm)固定厌氧铁氨氧化菌对氨氮去除率高达53.62%.这些结果都表明以MCHBs固定厌氧铁氨氧化菌后,能起到增强厌氧铁氨氧化反应去除废水氨氮的目的.  相似文献   
6.
污泥焚烧中Cd形态转化的热力学平衡模拟   总被引:1,自引:0,他引:1  
采用热力学平衡分析方法,结合典型污泥成分和焚烧条件预测了污泥焚烧过程中重金属Cd的转化和迁移规律。模拟计算中考虑了主量矿物质与Cl、S对Cd的形态转化的影响。研究结果表明,污泥焚烧过程中,在低温的条件下Cd主要以固体碳酸盐形式存在,随着温度升高,碳酸盐分解为固态CdO,随后有气态Cd(OH)2、Cd和CdO生成,并且在较高温度主要以气态Cd存在。焚烧体系中,矿物质SiO2对Cd的形态转化影响大于其他矿物质,SiO2能与Cd结合生成稳定的CdSiO3,从而可有效抑制含Cd气态污染物的排放。焚烧体系中Cl较易与Cd结合形成CdCl2而导致Cd的挥发,Cl含量的增加促进了Cd在焚烧体系中的挥发。在低温阶段,Cd易与S结合形成固态硫酸盐,抑制了金属的挥发;在高温阶段,金属的形态转化基本不受S的影响,但是可以影响气态金属Cd的生成温度。根据污泥在不同焚烧温度、Cl含量、S含量条件下Cd的不同产物形态,可以对Cd的污染进行有效控制。  相似文献   
7.
为了有效去除废水中的有机污染物和实现赤泥(RM)的再利用,利用废弃活性炭(WAC)作为碳源,通过还原焙烧-磁选二步法制备了赤泥基零价铁(ZVI/RM)材料作为类芬顿催化剂催化氧化废水中常见的有机污染物罗丹明B (RhB)和磺胺嘧啶(SD).材料表征结果表明,零价铁均匀分布在材料上,且材料具有明显的介孔结构.当初始pH为...  相似文献   
8.
在一维固定燃烧炉上进行了城市污水污泥层燃模拟实验,重点研究了不同焚烧工况条件下重金属Pb的迁移行为和形态转化特征,并利用4种固体吸附剂(CaO、Al2O3、粉煤灰和高岭土)对污泥焚烧过程中Pb的排放进行脱除,同时把结果与热力学模型计算进行了对比. 热力学平衡计算得到污泥焚烧过程中Pb主要以PbO(g)形式挥发,当氯化物存在时,Pb主要以PbCl2(g)形式挥发,并且Cl有促进Pb挥发的趋势;当硫化物存在时,Pb主要以PbSO4(s)形式存在,阻滞了Pb的挥发;固体吸附剂Al2O3、SiO2、CaO的加入有稳定的(PbO)(Al2O3)(s)、PbSiO3(s)和CaPbO4(s)化合物生成,延缓了PbO(g)生成温度,并且Al2O3对Pb脱除效果优于SiO2和CaO. 焚烧实验得到,随着焚烧温度的升高,焚烧底渣中Pb的残留量有减小趋势,并且底渣中Pb的易还原态比例逐渐增加,残渣态比例有下降趋势;焚烧时间的延长,对焚烧过程中Pb的挥发影响不大,但底渣中Pb的残渣态比例有所减小.焚烧过程中水分的增加导致Pb的氯化态向氧化态转变,阻滞了Pb的氯化物挥发,而空气过剩系数的增加,导致Pb的残留率下降.污泥焚烧过程中固体吸附剂CaO、Al2O3、粉煤灰和高岭土的加入有利于Pb的残留并固定在焚烧底渣中,从控制Pb挥发角度来看,CaO及Al2O3的效果要优于粉煤灰和高岭土.  相似文献   
9.
氯离子含量高于1000mg/L时,测定CODCr值较为困难。本文通过实验研究,测定CODCr时掩蔽剂HgSO4掩蔽氯离子的效率,从而获得在测定该类废水CODCr时,HgSO4:Cl-的最佳质量比,对高氯废水COD测定方法的研究具有一定的参考价值。  相似文献   
10.
系统研究盐酸浸出赤泥中铝和铁的过程,考察酸浸温度、盐酸浓度、酸浸时间、液固比以及赤泥粒度对铝、铁浸出率的影响。单因素实验和正交实验结果得出,在影响浸出率的酸浸温度、盐酸浓度、酸浸时间和液固比对铁、铝的浸出率的影响几个因素中,酸浸温度和盐酸浓度的影响最大,液固比和浸出时间其次。盐酸酸浸的最佳工艺条件为:赤泥粒度150 μm、酸浸温度80 ℃、盐酸浓度10 mol·L-1、液固比8∶1(V/m)、浸出时间150 min,此时铝的浸出率为96.7%,铁的浸出率为95.1%,铁铝总浸出率96.0%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号