首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   3篇
环保管理   1篇
综合类   5篇
评价与监测   1篇
  2019年   1篇
  2018年   5篇
  2014年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
基于硫碳同位素研究南京北郊冬季霾事件中PM2.5来源   总被引:1,自引:0,他引:1  
2015年12月27日—2016年1月6日,针对南京北郊地区一次霾事件所采PM_(2.5)样品,测定样品中水溶性离子、硫同位素与碳同位素组分含量。水溶性离子研究结果表明:该次霾事件以二次污染为主且移动源占主要地位。硫同位素分析结果表明:硫酸盐的δ~(34)S(SO_4~(2-))值的范围为4.4‰~6.8‰,平均值为5.7‰±0.7‰(n=11),结合该地潜在硫源可知,此次霾事件中硫酸盐气溶胶主要来源为机动车尾气及煤炭燃烧。PM_(2.5)中的δ~(13)C值变化范围为-28.43‰~-24.94‰,平均值为-26.62‰±1.11‰,说明碳质污染物来源主要为机动车尾气、燃煤。此外,硫、碳同位素具有较好的负相关性,结合潜在硫源、碳源可知,2016年1月1日之前,南京北郊地区大气污染源以汽油车尾气排放为主;1月1日之后大气污染源以柴油车尾气和燃煤排放为主。  相似文献   
2.
南充市近十年酸雨变化特征及降水化学组成研究   总被引:2,自引:0,他引:2  
依据南充市2003~2012年城区降水环境监测统计资料,分析了酸雨变化特征及降水离子化学组成。研究表明:这十年,酸雨频率平均为50.4%,2007年降雨量为最高,呈波动递减趋势变化,降水年平均pH值为4.88,呈现"低—高—低"的变化特征,城区酸雨频率和降水pH值月均值变化呈现高低交替的波动趋势。城区降水中主要阳离子成分是Ca2+,主要阴离子成分是SO2-4和NO-3。(SO2-4/NO-3)比值逐年下降,平均比值为7.82,酸雨污染类型仍以硫酸型为主;降水(NH+4+Ca2+)/(SO2-4+NO-3)和Ca2+/NH+4比值呈波动性变化,2007年分别达到最高值为6.71和50.27,除2010年比值均较低小于1外,近年来均有增加趋势,表明碱性离子缓冲能力增强了,降水酸度降低,pH值增加,但2007年pH值较低,主要与降雨量有关。综合分析,降水酸度不仅是酸性离子和碱性离子中和作用,也受其他离子浓度和降雨量、风向等气候条件、距离传输以及地形等影响。  相似文献   
3.
PM_(2.5)是大气的重要污染物之一,其成分复杂,为研究PM_(2.5)的污染特征及来源,于2016年3月采集南京北郊地区大气中的PM_(2.5),利用Dinoex ICS-3000和ICS-2000型离子色谱和DRI Model 2001A热/光碳分析仪分别测定了PM_(2.5)中的阴阳离子和碳质组分,利用元素分析仪-同位素质谱仪测定大气PM_(2.5)中的总碳同位素(δ~(13)CTC)组成特征.结果表明,2016年3月期间南京北郊地区PM_(2.5)污染严重,平均浓度达(106.16±48.70)μg·m~(-3),且88%观测天中存在明显的二次有机污染,SOC平均浓度为(3.58±2.78)μg·m~(-3),且在晴天条件下高浓度的二次有机碳(SOC)与紫外线作用下的O_3具有较强的相关性.大气PM_(2.5)中δ~(13)CTC值范围是-26.56‰~-23.75‰,平均值为(-25.47‰±0.63‰),结合化学组分的三相聚类分析结果可知,大气PM_(2.5)主要来源于燃煤过程、机动车排放,此外还受地质源和生物质燃烧源的影响.  相似文献   
4.
对2016年3月南京北郊PM2.5进行采样分析,通过样品中的水溶性离子(Na+、NH4+、K+、Ca2+、Mg2+、Cl-、NO3-、SO42-)和碳质组分(OC、EC),探讨霾污染的特征、来源及硫酸盐形成机制.结果表明,采样期间南京北郊PM2.5平均浓度(103.22±48.5)µg/m3.污染天二次硫酸盐的形成与NO2对SO2的氧化相关性较强,而O3的氧化作用影响较小;清洁天则相反.污染天,具有酸度缓冲作用的矿物粉尘使得气溶胶颗粒物总体呈弱碱性,而碱性环境下又更利于二次硫酸盐的形成.南京北郊早春二次污染严重,SOC主要由大气中碳氢化合物与O3发生光氧化反应生成.污染天主要排放源为机动车尾气排放,其次是生物质和煤炭燃烧;清洁天主要排放源为煤炭燃烧和扬尘,机动车尾气影响较小.  相似文献   
5.
为研究南京北郊不同季节PM_(2.5)中碳质组分的主要来源,分别在2014年1月1—23日和2014年7月3—22日进行PM_(2.5)样品采集,并分析其中有机碳(OC)、元素碳(EC)浓度及总碳同位素组成.结果表明,冬季PM_(2.5)浓度高于夏季,平均值为(146.69±64.67)μg·m-3,OC、EC浓度较高,分别为(14.77±5.58)μg·m-3与(9.01±4.74)μg·m-3;而夏季PM_(2.5)浓度为(57.69±23.80)μg·m-3,OC、EC浓度分别为(5.94±2.20)μg·m-3和(2.78±1.25)μg·m-3.二次有机碳(SOC)占OC比重较小,冬、夏两季分别为36.99%与27.37%,这与采样点紧邻公路主干道使颗粒物未得到充分的二次反应有关.南京北郊冬季δ13C平均值为-25.38‰±0.36‰,夏季为-26.50‰±0.58‰,通过与潜在污染源的δ13C值对比,推断出采样期间冬季主要的潜在碳质污染源为煤炭燃烧及机动车尾气,夏季主要的潜在碳质污染源为生物质燃烧及汽车尾气.  相似文献   
6.
采用EA-IRMS联用技术对2014年夏季南京北郊大气PM_(2.5)中硫酸盐的硫和氧同位素组成进行了分析,计算了SO_2氧化为硫酸盐的异相和均相氧化过程的贡献率以及一次、二次硫酸盐的比例.结果表明,2014年夏季南京北郊大气中硫酸盐气溶胶的硫同位素组成(δ~(34)S)范围为1.7‰~4.8‰,平均值为3.2‰±1.0‰(n=15);氧同位素组成(δ~(18)O)值范围为7.5‰~12.9‰,平均值为9.3‰±1.7‰(n=15).通过比较气溶胶硫酸盐及可能污染源的δ~(34)S,该研究区域夏季大气中的硫源主要来自当地燃煤与尾气排放.大气气溶胶中的硫酸盐主要为二次硫酸盐,且SO_2的氧化途径以均相氧化为主,比例为59.3%.夏季大气中SO_2的异相氧化以过量O_2下的Fe~(3+)催化氧化为主,均相氧化的主要机制包括O_3氧化反应及NO_2氧化反应.  相似文献   
7.
为研究南京地区昼夜大气PM2.5中的硫同位素组成情况,采用Delta V Advantage同位素质谱仪技术对2016年3-4月南京北郊地区大气PM2.5中昼夜δ34S(硫同位素值)进行分析,结合大气颗粒物化学组成,追溯昼夜大气PM2.5及SO42-的来源.结果表明:南京北郊地区PM2.5和SO42-的整体变化趋势一致,具有同源性.南京北郊地区白天大气PM2.5的δ34S范围为4.23‰~7.16‰,平均值为5.45‰±0.91‰;晚上δ34S的范围为4.20‰~6.73‰,平均值为5.22‰±0.83‰.相较于晚上,白天δ34S略高主要与NOx对SO2的异相氧化反应和机动车尾气的排放有关.重霾天δ34S范围为4.20‰~7.16‰,平均值为5.39‰±0.87‰;清洁天δ34S范围为3.14‰~5.14‰,平均值为4.03‰±0.57‰.重霾天的硫源与燃煤、机动车尾气排放及NOx对SO2的异相氧化反应有关;而清洁天主要受到机动车尾气排放及SO2与O3均相氧化反应的影响.研究显示,南京北郊地区ρ(PM2.5)昼大于夜,而ρ(SO42-)夜大于昼,重霾天大气PM2.5的δ34S高于清洁天,这主要与NOx、SO2、O3的相互转化有关.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号