首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
  国内免费   2篇
综合类   16篇
基础理论   1篇
社会与环境   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
沉水植物对沉积物-水界面环境特征的影响   总被引:2,自引:1,他引:1  
为明确沉水植物对沉积物-水界面环境特征的影响机制,在采自于太湖草、藻型湖区的沉积物柱状样中种植沉水植物后进行破坏性采样,测定沉积物-水界面以上5 cm上覆水的营养盐含量和沉积物的含水量、中值粒径、w(TOC)、w(TON)、w(TP)、金属元素含量等的垂直分布和氧气侵蚀深度.结果表明,种植沉水植物对沉积物-水界面环境特征的影响主要为:①显著降低了上覆水中ρ(PO43--P)[草型湖区上覆水由(7.98±1.85) μg/L降至(4.65±1.16) μg/L,藻型湖区上覆水由(7.86±0.84) μg/L降至(4.89±0.48) μg/L]和草型湖区上覆水中的ρ(DOC)[由(6.64±0.41) mg/L降至(4.73±0.69) mg/L],但没有引起上覆水中ρ(NO3--N)、ρ(NO2--N)和ρ(NH4+-N)的显著差异;②明显提高表层沉积物的含水量,减小草型湖区沉积物表层的中值粒径;③降低草型湖区沉积物表层2 cm内w(TOC)和w(TON),增加草型湖区上层沉积物中w(TP);④明显降低草型湖区沉积物中w(Ca)和w(Mg),但对草、藻型湖区沉积物中的Al,K,Cu,Pb和Zn的含量影响都不明显;⑤藻型湖区沉积物中氧气侵蚀深度由1.6 mm增至3.O mm,草型湖区沉积物则由3.7 mm增至24.0 mm.  相似文献   
2.
近50a东江流域径流变化及影响因素分析   总被引:10,自引:0,他引:10  
以1956—2005年降雨、径流与气象资料为基础,应用Mann-Kendall趋势检验、小波分析以及R/S分析等多种方法,探讨了东江流域径流年际变化特征及其对气候变化以及植被覆盖变化的响应。结果表明:①50 a来流域年径流序列变化趋势不明显,存在4 a、7~9 a、11~13 a、16~22 a等4类尺度的周期性变化规律;河源、岭下站径流序列具有较强的状态持续性,博罗站持续性很小。②厄尔尼诺现象出现的当年,东江流域年径流量普遍减少;厄尔尼诺现象出现的次年,年径流量普遍增加。太阳黑子数的急剧变化,与东江径流量的丰、枯也有良好的响应关系。③50 a来,在降雨量呈不显著减少趋势的背景下,河源、岭下站径流仍然呈不显著增加趋势的主要原因是蒸发量下降的缘故,是气候因素和流域植被退化共同作用的结果。  相似文献   
3.
文章利用Mike11软件对地处长江口、受强高潮的崇明岛陈家镇相关河网的断头浜疏通、排污引清以及四号河的污染水体原位修复等改善生态环境的综合治理工程措施进行了计算分析。结果表明,工程实施后,在合理的闸门调度下,排污引清5 d后,四号河水质即明显改善,COD降低33%,氨氮降低42%,TP降低21%;四号河的原位生态修复工程可以加快水体的自净。河网综合治理方案的实施可有效改善水质。  相似文献   
4.
鄱阳湖流域水资源丰富,在非汛期尤其是用水高峰期,存在供需水矛盾和河道外用水挤占河道内用水现象。基于水量分配方案,以控制断面为节点,考虑河道外需水,兼顾河道内生态环境需水,系统提出计算流域控制断面最小控制需水量方法。在此基础上,以抚河流域为例,把流域划分为12个控制断面,分别为沙子岭、黎川、南城、洪门、廖坊、石门、廖家湾、娄家村、马圩、焦石、柴埠口和李家渡,各断面的最小控制需水量分别为740、380、2873、1200、4981、261、5085、7168、050、10894、1556 和1030 m3/s。通过水文监测控制流域断面流量,为落实水量分配方案、保护流域水环境和维持河流生态系统健康提供保障。同时,以最小需水量并与实测流量比较,确定各用水区余缺水量,为实施流域非汛期水量调度提供依据  相似文献   
5.
选择南通协兴港附近裸露潮滩,使用便携式土壤通量测量系统开展潮间带湿地CO2通量监测,研究无植被覆盖条件下潮间带碳通量特征及其影响因素的关系.实验结果表明,各潮滩CO2固定水平表现为高潮带 < 中潮带 < 低潮带.低潮带叶绿素a含量较高,对CO2的吸收能力较强,而高潮带有机碳含量高,微生物呼吸作用释放的CO2通量较高,研究区整体上表现为对CO2净吸收.此外,CO2净固定通量随土壤有机碳含量和落潮时间增加而下降,与土壤叶绿素a含量和地下水位关系密切.研究成果对于明确人类活动对江苏沿海潮间带裸露光滩碳循环的影响具有重要意义.  相似文献   
6.
在石英砂充填的二维砂箱中开展表面活性剂(Tween 80)冲洗四氯乙烯(PCE)的修复实验,基于图像分析技术监测不同污染源区结构条件下NAPL相的去除过程.由于实验条件限制,实验中缺乏溶解相浓度数据.为此进一步基于UTCHEM数值模拟方法来理解NAPL相和溶解态之间的质量传输过程,并探讨表面活性剂浓度、注入速率等因素对修复效率的影响.综合砂箱实验和数值模拟结果表明:介质均质和非均质条件下会形成不同类型DNAPL污染源区结构,表现为离散状PCE与池状PCE体积比(GTP)差异.由于离散状污染物与表面活性剂的接触面积更大,更易被优先去除;初始GTP值越高,污染物的修复速率和修复效率也越高.增大表面活性剂浓度或提高表面活性剂的注入速率,虽然能提高DNAPL的修复速率,但会明显降低表面活性剂的修复效率,实验过程中修复效率降幅可达93%.线性驱动溶解模型可以有效地模拟表面活性剂修复DNAPLs过程,基于数值模拟方法选择合适的表面活性剂配比可有效的节省实际污染场址修复经费和时间成本.  相似文献   
7.
文章在野外调查的基础上,在白洋淀台田和沼泽中各选择6个样区,统计分析了2种生境芦苇地上生物量;运用冗余分析方法(RDA),分析了芦苇生长季(4~9月)平均水深、土壤/底泥有机质、全氮和全磷等对两类生境中芦苇地上生物量的影响。结果表明,台田、沼泽中芦苇地上生物量分别为1408.2±527.5 g DW/m^2、723.2±109.1 g DW/m^2,两类生境中的芦苇地上生物量沿水深梯度均呈先增加后减小的变化趋势。台田芦苇在水深为?77.3 cm时地上生物量最大,为2065 g DW/m^2,沼泽芦苇在水深为59.7 cm时地上生物量最大,为869.2 g DW/m^2。台地芦苇地上生物量与水深的相关系数为?0.813(P<0.05),与其他3个环境因子的相关性不显著;沼泽芦苇地上生物量与4个环境因子的相关性均不显著,表明沼泽芦苇地上生物量的影响因素较为复杂。  相似文献   
8.
流速对太湖河道底泥泥沙、营养盐释放规律影响实验研究   总被引:5,自引:0,他引:5  
河湖中的底泥作为二次污染源,影响河道水环境.太湖河口及调水区河流底泥泥沙、营养盐的释放扩散受水动力条件的影响越来越受到人们的重视.用环形水槽模拟河道的水动力条件的改变,通过实验研究悬浮泥沙、总溶解氮磷(TDN,TDP)和总氮磷(TN,TP)浓度在不同流速条件下在水体中的变化情况,从而掌握底泥泥沙、营养盐在不同流速下的释放特性.本研究按照泥沙的起动标准,把相对应的流速分为"个别动"、"少量动"以及"普遍动"流速,对应不同的泥沙悬浮量以及营养物质的释放量.研究显示高于起动流速下营养盐的动态释放较低于起动流速下的静态释放.泥沙的悬浮量与营养物质的动态释放过程密切相关.TDN、TDP释放量和最终平衡浓度随流速呈对数关系;TN、TP平衡浓度随流速增加呈指数形式增加.整个释放过程为,0~30 min的释放前期为孔隙水释放,营养物质释放量大且速率快;后期为再悬浮颗粒物释放,释放量小且速率减慢,达到平衡之后,营养盐浓度基本稳定.营养物质的空隙水释放与在悬浮颗粒物释放的比例有待进一步的研究.  相似文献   
9.
选取南京地区滑坡为研究对象。基于DEM及遥感影像数据,选取样本,提取滑坡影响因素,计算影响因素熵值。利用K折粒子群优化(K PSO)方法,在GIS环境下针对地质资料缺乏情况,生成一个可靠的南京地区滑坡敏感图。自组织特征映射网络(SOM)法用作一个并行研究,结果作为K PSO法结果对比。结果表明,K PSO法聚类准确率为85%,自组织映射(S OM)法聚类结果准确率为80%,由此说明K PSO聚类法在地质资料不足前提下形成滑坡敏感区是一种行之有效的方法。  相似文献   
10.
在太湖草、藻型湖区采样,分别测定了1,3,5,10,15cm 5层沉积物和沉积物表面以上5,20,35cm处及水表面以下20cm处4层水的多项指标.结果表明:草型湖泊水柱中SS总、SS有机、Ch1-a、TN、TDN、TP和TDP等指标显著低于藻型湖区;草型湖区水柱中SS总、SS有机、TN、TDN和TP都呈现出越往下浓度越高的趋势,而藻型湖区各水层间差异不明显.两类湖区沉积物的TN、TP、TOC和粒径都在3~5cm处出现拐点;草型湖区沉积物溶解氧层厚度(<1mm)小于藻型湖区(<2.5mm).可见在不同的生境类型以及不同的指标体系下,沉积物-水界面的厚度也相应不同.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号