首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   11篇
  国内免费   31篇
安全科学   4篇
废物处理   1篇
环保管理   2篇
综合类   57篇
基础理论   2篇
污染及防治   4篇
评价与监测   9篇
  2024年   1篇
  2023年   14篇
  2022年   12篇
  2021年   11篇
  2020年   14篇
  2019年   17篇
  2018年   3篇
  2011年   4篇
  2010年   1篇
  1994年   1篇
  1987年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
1.
针对土壤环境监测的复杂性和特殊性,从空白试验、检出限、方法验证、质量控制和标准文本等方面,指出了《环境监测分析方法标准制修订技术导则》《HJ 168—2010》对土壤环境监测标准制修订工作的适用性和执行中存在的问题。提出,为保证土壤标准制修订质量和标准执行质量,应研究适宜土壤监测方法标准的质量控制指标体系和评价体系,及时修订《HJ 168—2010》或发布补充要求;对现有土壤监测方法标准进行技术评估,加强对于土壤标准制修订工作的指导和监管。  相似文献   
2.
以国家重点生态功能区县域环境监测质量评价为目标,综合应用德尔菲法、层次分析法和模糊综合评价法,构建了国家重点生态功能区县域环境监测质量评价方法,并确定了评价因子、权重系数、计算方法。该方法评价指标共分为三层:第一层为目标层,即国家重点生态功能区县域环境监测质量;第二层为准则层,包括人员及资质、现场监测、实验室管理、报告编制及数据上报;第三层为方案层,包括人员操作、持证上岗、资质认定、人员培训、水质布点采样流转情况、空气自动站运维情况、现场质控实施情况、实验室环境条件、样品试剂的保存与管理、仪器检定与校准、实验室质量控制实施情况、数据填报软件运行情况、监测报告规范性等13个评价要素。经矩阵一致性检验确定了各评价要素的权重,将该权重与各要素得分运算后得到县域环境监测质量评价结果。在此基础上,选取广东、山西、陕西、四川和青海等5个省份的15个国家重点生态功能区县域作为典型区开展了实地调研,并应用评价体系对其进行了监测质量等级评价。结果表明,15个典型县域中,环境监测质量等级为优的县域占13.3%,一般、较差的县域分别占66.7%、20%。县域环境监测承担单位在资质、报告编制及数据上报方面表现较好,在现场监测、人员操作方面问题突出,在实验室管理方面有待提升。  相似文献   
3.
pH、溶解氧、叶绿素a之间相关性研究Ⅰ:养殖水体   总被引:6,自引:1,他引:5  
利用国内、外近20年的资料和饮用水水源地潘家口水库现场围隔实验结果,分析养殖水体中pH、溶解氧(dissolved oxygen,DO)和叶绿素a之间的相互关系.结果表明,当叶绿素a平均含量低于10μg/L时,水体交换弱的夏季和秋季养殖水域水体中pH、DO与叶绿素a无明显相关甚至无相关;水体交换强的夏季和秋季养殖水域水...  相似文献   
4.
投饵养鱼对潘家口水库藻类生长影响的围隔试验研究   总被引:1,自引:0,他引:1  
吴敏  黄岁樑  杜胜蓝  臧常娟  高峰  林超  罗阳 《生态环境》2010,19(8):1906-1911
设置投饵、投饵单养花鲢(Aristichthisnobilis)、投饵单养鲤鱼(Cyprinuscarpio)、投饵混养花鲢和鲤鱼以及空白对照5个围隔及水库背景水体,研究投饵养鱼对潘家口水库浮游藻类生长和群落结构的影响。结果发现,试验期间水库水体和空白对照围隔中总藻平均密度分别为2.60×10^6L^-1和3.38×10^6L^-1,均以蓝藻和绿藻为主且基本保持稳定状态;投饵能有效促进藻类生长,只投饵围隔中总藻平均密度达到1.17×10^8L^-1,藻种组成向单一鱼腥藻(Anabaena)方向演替;养殖花鲢抑制藻的生长,参照只投饵围隔,抑制率接近80%,绿藻占据极大优势,其中栅藻(Scenedesmussp)、芒锥藻(Errerellabornhemiensisconr)和空星藻(Coelastrumsp)成为优势藻种;投饵养殖鲤鱼也能有效降低藻生物量,总藻平均密度为4.07×10^7L^-1,绿藻占总藻的比例由27%增加到95%,其中空星藻和小球藻(ChlorellavulgarisBeij)为优势藻种;投饵混养花鲢和鲤鱼围隔中总藻密度稍高于单养花鲢和鲤鱼围隔,为4.37×10^7L^-1,栅藻和鱼腥藻为优势藻种。  相似文献   
5.
pH、溶解氧、叶绿素a之间相关性研究Ⅱ:非养殖水体   总被引:2,自引:0,他引:2  
利用国内、外近20年的资料和饮用水水源地潘家口水库现场围隔实验结果,分析非养殖水体中pH、溶解氧(DO)和叶绿素a之间的相互关系。结果表明,当水体处于富营养化状态即叶绿素a平均含量高于10μg/L时,pH、DO与叶绿素a呈显著正相关。当叶绿素a平均含量低于10μg/L时,水体交换强或有机重污染的天然水体中DO与叶绿素a...  相似文献   
6.
目前我国在生态环境保护与生态文明建设方面取得了长足进步,但存在的各方面问题仍不容忽视,生态建设与环境保护的形势仍不容乐观,生态环境的现状仍较为严峻,对生态环境的保护亟待加强。对我国生态环境建设取得的进展与存在的问题进行探讨,分析造成我国生态环境建设落后的原因,并对当前生态环境建设问题的解决途径进行探索,为生态文明研究和建设提供参考和借鉴,具有重要的理论和现实意义。  相似文献   
7.
为了解独流减河流域水质时空特征及污染物排放结构情况,准确掌握污染来源和防控重点,达到改善流域水质的目的,基于2017年独流减河流域9个监测断面的8个水质指标的监测数据,采用综合水质标识指数法进行水质评价,运用多元统计分析方法中的聚类分析和主成分分析开展水质时空分布特征及污染物来源解析研究.结果表明:独流减河流域水质时空特征差异显著,干流水质优于支流水质;时间维度划分为2个时段T1(1-3月)和T2(4-12月),T2时段水质优于T,时段,氨氮、总磷和阴离子表面活性剂是各时段的主要污染因子,畜禽养殖、农村居民生活为主要污染源,氟离子和CODCr分别是T1和T2时段的另外主要污染因子,代表工业电镀行业废水污染和耗氧有机污染.空间分布划为G1组和G2组,其中G1组主要位于中上游,主要污染因子为氨氮、总磷及阴离子表面活性剂,代表畜禽养殖和居民生活污染;G2组位于中下游,主要污染因子为化学需氧量、总磷和氟化物,代表城镇居民生活污染和工业电镀行业废水污染,G2组水体水质优于G1组.  相似文献   
8.
文章首先就自然生态环境保护中环境监测的作用进行了分析,然后主要就如何更好的落实环境监测,切实发挥出其在自然生态环境保护中的作用,提出了部分探讨性建议,希望能够为相关的工作实践提供参考。  相似文献   
9.
二次硝酸盐是PM2.5中的重要二次无机离子组分,为了解PM2.5中二次硝酸盐的形成及防控途径,基于天津市城区点位2018~2019年高时间分辨率的PM2.5在线监测数据,对气溶胶颗粒物的离子组分、pH值、NH3-NH4+和HNO3-NO3-浓度分布以及硝酸铵形成的敏感性进行了研究.结果表明,天津PM2.5平均浓度为58μg·m-3,PM2.5中主要离子组分为NO3-、NH4+、SO42-、Cl-和K+,在PM2.5中的占比分别为18.4%、11.6%、10.3%、3.3%和2.6%,PM2.5及主要组分浓度均在采暖季高、非采暖季低.气溶胶颗粒物整体呈现弱酸性,平均pH值为5.21,季节分布为春冬季节高、夏秋季节低,日变化趋势表现为早间(00:00~08:00)低,其他时间略高.NH3和HNO3的平均浓度水平分别为16.7μg·m-3和1.2μg·m-3,NH3浓度在每年的4~9月相对较高,10月~次年2月浓度相对较低;HNO3浓度水平月际变化不明显.除夏季外,其他季节NH3浓度均为早晚较高,其他时段较低;HNO3浓度整体呈现白天相对略高,晚上相对略低的特点.不同pH值下NH3与NH4+、HNO3与NO3-的浓度分布呈现明显的非线性关系,早晚NH4+与NO3-的浓度均较高,pH值与NH3和NH4+以及HNO3与NO3-的浓度分布均为非线性.敏感性图表明,2018~2019年天津市硝酸铵的形成主要处于HNO3敏感区域,部分处于NH3&HNO3敏感区域.从季节分布上看,春季、秋季和冬季硝酸铵的形成主要处于HNO3敏感区域,夏季硝酸铵的形成主要处于HNO3和NH3&HNO3敏感区域.为有效减少天津市PM2.5中二次硝酸盐的形成,春季、秋季和冬季主要开展HNO3前体物(NOx)的控制,夏季主要开展HNO3前体物(NOx)和NH3的协同控制.  相似文献   
10.
为评估和预测天津市减污降碳协同效应,采用减排量弹性系数法评估减污降碳协同效应,基于STIRPAT模型预测天津市“十四五”期间的减污降碳协同效应,并分情景预测天津市2026~2060年的减污降碳协同效应.结果表明:大气污染当量和温室气体的主要排放源均为工业源;2015~2017年天津市减污降碳协同效应系数范围为0.11~0.26,2013~2014年和2018~2020年天津市的减污降碳协同效应系数均小于0;天津市“十四五”期间减污降碳协同效应系数为0.06;各种情景下,2026~2060年天津市减污降碳协同效应系数均大于0.天津市2011~2020年减污降碳协同效应波动变化,“十四五”时期或可进入减污降碳协同增效阶段.天津市要在2026~2060年实现较高水平的减污降碳协同增效,就需要合理控制城镇化率、人口总数和地区生产总值,增加第三产业比重和高技术比重,持续降低能源强度.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号