首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
  国内免费   6篇
综合类   15篇
基础理论   2篇
污染及防治   4篇
评价与监测   2篇
  2023年   5篇
  2022年   1篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
2017年7月25日至8月2日台风"纳沙"和"海棠"影响期间,广东省出现大范围O_3污染过程,分析了其变化特征和影响因素。结果表明,台风登陆前城市O_3污染逐渐加重,而台风登陆后O_3污染逐渐缓解,污染较重城市集中分布在广东省中部,主要是广州市、佛山市、江门市、东莞市、中山市、汕尾市和清远市。造成台风期间O_3污染的主要原因是:(1)双台风影响期间,广东省总体受海平面高压控制,以高温晴热天气为主,太阳辐射强、气温高、降水少,相对湿度较低,有利于本地光化学反应进行;(2)受台风外围下沉气流影响,垂直方向扩散条件不利,而平流层O_3有可能向下运输;(3)台风登陆阶段,近地面风向以偏北风为主导,且风速小,导致O_3浓度出现明显的上升。  相似文献   
2.
汪宇  王志春  嵇萍  陈多宏 《环境工程》2017,35(12):77-81
基于EOF方法分析2016年珠三角9城市日均AQI指数,前3个空间模态累积方差贡献达90%,得到珠三角区域空气质量3种主要的空间分布类型。整体一致型方差贡献71%,9城市空气质量优劣表现一致,当发生污染时,以静稳天气为背景,佛山、江门、中山和东莞污染较为严重。南北相反型方差贡献12%,夏季南部城市普遍优于北部,冬季则相反,这与珠三角区域南北方向上的主导风向有关。东西相反型方差贡献7%,以地面风场辐散(或辐合)为天气背景,纬向风可能是造成东西部空气质量差异的原因之一。  相似文献   
3.
为更好地区分大气污染物浓度变化中气象与源排放因素的影响,使用中尺度气象模型WRF和三维空气质量模型CAMx,通过固定源清单的方法模拟研究了广东省各地区不同时期气象因素对PM_(2.5)浓度变化的影响,并结合实测的PM_(2.5)浓度变化,计算出源排放因素对PM_(2.5)浓度的贡献。结果表明:相对于2014年,2015年广东省夏季的气象条件不利于PM_(2.5)浓度的下降,春季和秋季的气象条件有利于PM_(2.5)浓度的下降,就全年各季度平均而言,珠江口附近地区气象条件较有利于PM_(2.5)浓度的下降;源排放变化对肇庆市、韶关市和揭阳市等城市PM_(2.5)浓度变化有较强的削减作用,可使其浓度下降30%以上,显示这些城市的减排工作较为有效,深圳市、珠海市、东莞市、中山市与顺德区等市(区)PM_(2.5)污染改善主要是由于有利的气象条件的影响,源排放变化对珠海市和湛江市等城市污染起加剧的作用,表明不利的源排放变化抵消了部分有利气象条件对PM_(2.5)污染的改善作用,应加强对这些地区源排放的控制。  相似文献   
4.
5.
使用WRF/CAMx模型及化学过程分析(CPA)模块,系统研究了广东省夏、秋季的臭氧生成敏感性与生成速率。夏季,广州与东莞等珠三角中部地区臭氧生成主要对VOCs敏感,郊区的臭氧生成速率较大,珠江口地区是重要的臭氧生成源区,夏季白天(08:00-17:00)平均净臭氧生成速率可达37μg/(m^3·h),位于珠三角东北部的天湖白天平均净臭氧生成速率约为25μg/(m^3·h)。秋季,珠江口西岸臭氧生成主要对VOCs敏感,秋季臭氧生成速率显著低于夏季。夏、秋季珠三角大部分地区臭氧生成敏感性从早上对VOCs敏感逐步过渡到下午对NO_x敏感,广东其他大部分地区则全天均为NOx敏感,一般在VOCs敏感区中的臭氧生成速率与化学消耗速率均较大。中心城区的臭氧生成弱,臭氧净化学消耗强。  相似文献   
6.
珠三角在全国主要城市群中率先在2015年实现PM2.5达标,但区域O_3上升的势头并没有得到遏制。为深化珠三角空气质量精细化管理,有效遏制区域O_3上升和促进空气质量改善,应用三维空气质量模型对珠三角秋季典型O_3污染进行了40种情景的模拟分析,定量研究了珠三角重污染季节O_3与前体物排放的关系。结果表明,秋季珠三角大部分点位O_3与前体物排放的关系表现出高度非线性的规律。对于江门、中山和珠海等下风向站点,NO_x的减排对O_3污染的控制有强烈的不利效应,若NO_x减排30%,则O_3浓度上升24%~41%,当NO_x削减量在60%以上时,O_3浓度随着NO_x削减而下降;区域VOCs的减排可以有效降低O_3浓度,若NO_x排放不变,VOCs减排30%,则O_3浓度可以下降20%~26%。对于惠州、深圳和东莞等上风向的站点,NO_x减排对O_3污染的不利效应较弱,当NO_x削减量在30%以上时,O_3浓度随着NO_x削减而下降。若NO_x减排比例为12%,VOCs减排比例为50%,珠三角西部O_3浓度下降幅度可达20%以上,其他地区O_3浓度普遍下降10%~16%。若NO_x减排比例为8%,VOCs减排比例为30%,中山、江门与珠海的O_3峰值浓度将下降15%左右,但其他地区的O_3污染改善不明显,广州、东莞、肇庆等地的O_3改善幅度在10%以内。在2017年广东省的臭氧专项行动中,实际的O_3前体物削减力度远未达到建议方案的程度,而且气象条件可能有利于O_3污染加剧,导致O_3控制效果不如预期。要缓解珠三角秋季的O_3污染,珠三角及其邻近地区应该加大VOCs的控制力度,减少NO_x的减排力度。  相似文献   
7.
O_3已取代PM_(2.5)成为珠三角空气污染的首要污染物,深入研究珠三角背景地区O_3浓度变化特征对全面掌握珠三角空气质量概况具有非常重要的意义。以珠三角北部郊区背景监测点位广州市从化区天湖站点2006—2018年的监测数据为基础,结合空气质量模型与过程分析等工具,对珠三角背景地区的O_3浓度进行分析。结果表明,2006年以来,珠三角背景地区的O_3年平均质量浓度均在80μg·m~(-3)左右波动,年均值在2014年达到自动监测以来的历史峰值91μg·m~(-3),2014年以来有逐年下降的趋势。2006—2018年O_3小时质量浓度的频数分布表明30—100μg·m~(-3)是主要的小时质量浓度水平,占比约为59%,100μg·m~(-3)以下质量浓度的占比约为70%,160μg·m~(-3)以下质量浓度的占比约为94%,天湖站小时质量浓度超标(大于200μg·m~(-3))概率为1.8%。平均而言,天湖站6—7月的O_3质量浓度最低,分别为71μg·m~(-3)与73μg·m~(-3)。冷暖交替的月份质量浓度相对较高,10月与4月分别达到102μg·m~(-3)与84μg·m~(-3),过程分析结果显示,在下沉气流等影响下,近地面层上层边界O_3垂直输送是4月与10月高质量浓度O_3的主要来源。天湖站的日均与月均O_3质量浓度与日照时数均存在正相关关系,O_3昼高夜低且与NO_2呈反相关关系,O_3质量浓度远高于NO_2,说明天湖受人为源排放影响少。天湖站化学过程对O_3的影响因季节而异,夏季光化学过程对O_3的影响明显,白天平均O_3净化学生成速率为18.5μg·m~(-3)·h~(-1);其他季节珠三角背景地区的O_3质量浓度主要受物理过程影响。  相似文献   
8.
李婷苑  陈靖扬  龚宇  沈劲 《环境科学》2023,44(7):3695-3704
气象条件是造成臭氧季节变化的重要原因,为了解广东省冬季臭氧污染的气象成因,使用空气质量和气象要素的地面、垂直探测资料和再分析资料,选取了2022年1月3~6日广东省臭氧中度污染过程与2015~2021年秋季(高污染季)进行对比分析.结果表明:(1)污染过程期间超标城市总数为8个,其中1月4日肇庆达中度污染(219μg·m-3);广东省ρ(O3-8h)平均值为123μg·m-3,较历史秋季平均浓度偏高了21%,但臭氧污染影响范围小于历史秋季污染过程.(2)风速偏小、日照时数偏长和局地环流影响下的气流回流效应是此次臭氧污染过程最主要的地面气象条件,气温偏低可能是这次污染过程影响范围偏小的重要原因.(3)垂直探测表明,夜间至早晨的贴地逆温,配合下沉气流偏强、风速偏小,使得上午时段NO2浓度维持较高水平,进一步促使臭氧浓度增量比非污染时段偏高34.2μg·m-3,残留层臭氧下传加剧1月4日臭氧污染.(4)气流轨迹分析显示臭氧存在水平输送和高空地面混合,近地面不同高度潜在源区主要集中在广...  相似文献   
9.
2015年9月7-16日珠三角地区出现了一次区域性的空气污染过程。利用地面空气质量和气象要素监测数据,结合后向轨迹模式综合分析了此次过程的污染特征及其成因。结果表明,此次事件主要是臭氧浓度上升导致的区域性污染,重污染区域呈现由珠三角中北部广佛肇地区向南部沿海城市转移的趋势;高压均压场控制、大范围盛行下沉气流以及地面风速小的静稳天气条件是此次污染过程持续和加重的重要气象因素;污染气团的远距离输送影响了该地区的空气质量状况。  相似文献   
10.
利用粤港澳珠三角地区空气质量监测网络的近地面大气污染物浓度观测数据,风、气温、气压和相对湿度等气象观测数据及水平分辨率为1°×1°的由美国国家环境预报中心(NCEP)提供的FNL全球分析资料中的再分析气象场数据,从前体物和光化学生成、水平传输、垂直传输的角度,对台风"妮妲"登陆前,珠三角地区近地面出现的O_3浓度高峰进行原因分析。结果表明:台风登陆前,珠三角地区云量较低,气温升高,相对湿度较大,同时前体物浓度升高,有利于本地O_3光化学生成,造成O_3浓度升高;但珠三角地区近地面风速很小,且以辐散为主,故水平传输不是造成O_3浓度大幅升高的原因;在台风靠近珠三角地区的过程中,珠三角地区受台风外围下沉气流控制,造成高层大气向近地面输送O_3,同时本地生成的O_3等各类大气污染物无法向上扩散而逐渐累积。以上因素最终导致台风"妮妲"登陆前珠三角地区近地面O_3浓度升高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号