排序方式: 共有10条查询结果,搜索用时 38 毫秒
1
1.
基于广州市2016年第四季度空气质量实测及预报数据,对广州市污染季节空气质量预报效果进行了评估,结果表明,2016年第四季度广州市空气质量级别预报准确率83.7%、AQI范围预报准确率67.4%、首要污染物预报准确率67.2%、综合考核评分87.4分、相关系数0.78,预报效果总体良好,预报准确率在优良级别时相对较高,而在轻度污染以上级别时相对较低。预报误差分析表明,气象预报精细化程度不足、模式预报不确定性等客观因素,预报员缺乏对污染过程物理化学机制的深入理解等主观因素共同导致了预报的误差。 相似文献
2.
3.
4.
基于2016年冬季泰州市环境空气质量自动监测数据,定量评估NAQPMS模式、CMAQ模式和人工订正对污染物质量浓度和空气质量等级的预报效果。结果表明,模式预报和人工订正对各污染物预报的相关系数由高到低排列为PM_(2.5)、PM_(10)、NO_2、SO_2、O_3-8h,颗粒物预报效果最好。除O_3-8h外,NAQPMS对各项污染物预报的相关系数R为0.47~0.82,CMAQ为0.75~0.81,人工订正为0.43~0.78,3种预报方式均能准确反映污染物浓度的变化趋势;模式预报、人工订正对O_3-8h预报相关系数均0.4。在发生颗粒物污染过程时,人工订正结果相对更为准确。NAQPMS、CMAQ和人工订正对空气质量等级24 h预报准确率分别为38.9%、41.1%和35.6%,NAQPMS对优类别的预判准确率较高,CMAQ、人工订正对良类别的预判准确率较高。对比不同时效的预报效果,24 h预报时效的准确率高于48和72 h。提出,城市空气质量预报可采用集合预报方式,综合1~2种运行较稳定的主流预报模式预报结果,预报员对模式模拟结果进行人工修订,提高预报准确率。 相似文献
5.
6.
利用2015年环境空气质量监测数据,对天津市OPAQ空气质量统计预报模型预测效果进行验证评估。结果表明,模型对天津市AQI和PM_(2.5)、PM_(10)、O_3、NO——2的预测结果与实测结果具有较好的趋势一致性,且预测时间越临近,拟合度越好,24 h预报的相关系数r全部达到0.8以上。对PM_(2.5)的预报性能明显优于PM_(10)、O_3和NO_2,PM_(2.5)平均值预测略呈正偏差,但重污染预测值偏低约15%;O_3和NO_2预测值呈明显负偏差,O_3峰值预测不足,NO_2预测值整体偏低,均以24 h预报趋势性最好,但负偏差最为突出。 相似文献
7.
重大活动保障预报不同于业务预报,其核心是服务管控,并注重提前预报的时效性和精细化。该文总结了首届中国国际进口博览会空气质量保障预报工作的实践经验:在历次保障预报联合会商组织架构的基础上,完善联合会商机制,强调预报保障主体单位与支持单位的预报工作内容和职责的区分,通过数值模式的优化改进、针对性开展关键气象因素专题等多种技术手段不断提升预报精准度,并创新应用历史相似污染案例库挖掘和匹配分析,注重预报效果评估以及时总结预报经验,不断提升预报的准确性,为管理决策提供强有力的技术支撑。 相似文献
8.
为了研究 2016年二十国集团领导人峰会(G20峰会)期间长三角区域臭氧(O3)变化特征,评估管控措施对O3浓度的影响,利用2016年8月10日至9月20日杭州及周边地区的空气质量监测数据、气象数据以及排放清单数据,分析了O3和NO2浓度及气象条件的时空分布特征,研究了不同管控区域不同保障时期O3浓度的时空变化和O3敏感控制区的改变。结果表明:峰会保障期间对于一次排放污染物和细颗粒物的管控措施效果明显,但核心区的O3质量浓度高于严控区和管控区,分别高出11.2、9.2 μg/m3。日间的NOx管控导致O3日变化幅度增高接近50 μg/m3。在峰会保障期间,卫星数据和站点观测结果显示核心区O3由VOCs控制区转为NOx-VOCs协同控制区,整个长三角区域的O3生成对于NOx排放量更为敏感。管控措施越强,核心区的O3生成对于NOx排放越敏感,且O3浓度与NOx浓度的相关性越强。对NOx和VOCs的协同控制降低排放,是关系O3浓度管控的一项重要工作。 相似文献
9.
10.
为探讨成都冬季污染过程成因,评估应急减排效果,以2019年12月成都发生的一次长时间污染过程为例,分析污染成因和典型污染物变化特征等,并对四川省启动预警的管控效果进行评估。结果表明:污染期间四川省PM2.5平均质量浓度为77.9 μg/m3,高出冬季常态浓度1倍左右,成都峰值浓度高达176.0 μg/m3;盆地独特的地形和静稳小风的气象条件,加之高压脊控制影响,污染前期出现连续晴好天气,夜间逆温增强,污染物累积迅速,湿度增大导致污染物二次转化增强,是该次污染过程的重要外因;PM2.5中硝酸根离子贡献最大(26.7%),NOx及其二次转化的硝酸根离子是造成该次污染的主要原因;启动黄色预警后,NO2及其转化后的硝酸根离子浓度以及PM2.5浓度仍呈上升趋势,各类源贡献显著;升级橙色预警后,NO2峰值浓度明显下降,硝酸根离子占PM2.5的比例下降3.7个百分点,PM2.5浓度上升趋势得到明显遏制;该次区域协同减排效果明显,区域PM2.5日平均质量浓度下降9.1%~13.1%,区域性污染推迟1d出现,预警城市的重度污染、中度污染、轻度污染天数分别减少13、13、7 d;PM2.5浓度下降主要来自于工业源、扬尘源和移动源的减排贡献,平均减排贡献比例分别为60.0%、31.3%和8.7%。 相似文献
1