首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2150篇
  免费   202篇
  国内免费   435篇
安全科学   89篇
环保管理   231篇
综合类   1765篇
基础理论   171篇
污染及防治   110篇
评价与监测   193篇
社会与环境   174篇
灾害及防治   54篇
  2024年   7篇
  2023年   62篇
  2022年   77篇
  2021年   84篇
  2020年   106篇
  2019年   102篇
  2018年   65篇
  2017年   80篇
  2016年   104篇
  2015年   101篇
  2014年   190篇
  2013年   127篇
  2012年   135篇
  2011年   140篇
  2010年   114篇
  2009年   119篇
  2008年   109篇
  2007年   116篇
  2006年   72篇
  2005年   85篇
  2004年   74篇
  2003年   87篇
  2002年   74篇
  2001年   54篇
  2000年   59篇
  1999年   74篇
  1998年   43篇
  1997年   44篇
  1996年   41篇
  1995年   49篇
  1994年   28篇
  1993年   35篇
  1992年   26篇
  1991年   30篇
  1990年   31篇
  1989年   37篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1979年   1篇
排序方式: 共有2787条查询结果,搜索用时 15 毫秒
1.
将两性(十二烷基二甲基甜菜碱)修饰磁化炭分别以质量分数0、1%和2%加入嘉陵江流域(川渝段)内苍溪(CX)、南部(NB)、嘉陵(JL)和合川(HC)沿岸土中,考察各混合土样对Cu^2+的等温吸附和热力学特征。结果表明:混合土样对Cu^2+的最大吸附量为58.36 mmol/kg~366.85 mmol/kg,添加等量两性磁化炭时各混合土样对Cu^2+吸附量表现为JL>NB>CX>HC的趋势,且添加比越高吸附能力越强。各混合土样对Cu^2+的吸附为自发、吸热和熵增的反应过程,对Cu^2+的吸附量与温度和pH值均呈正相关关系。当离子强度为0.1 mol/L时,各混合土样(除HC外)对Cu^2+的吸附量最大。  相似文献   
2.
本文将反向传播神经网络(BPNN)应用于青藏高原一江两河流域(雅鲁藏布江山南段、拉萨河、年楚河)水体中重金属浓度预测,探讨了输入变量、预测因子、隐藏层节点数和模型结构的影响.模型以溶解氧(DO)、pH、电导率(EC)、总磷(TP)、铁(Fe)作为网络的输入层,重金属砷(As)、锑(Sb)、钼(Mo)、锰(Mn)的含量作为网络的输出层,使用Levenberg-Marquardt (LM)算法进行训练.其中,BPNN隐藏层的传递函数为tansig,隐藏层节点数为9,输出层的传递函数为purelin,输出层节点数为4.结果表明:(1)以单个元素作为预测因子时,As、Sb、Mo、Mn预测值和实测值的决定系数(R2)分别为0.98、 0.933、 0.894、 0.928;均方根误差(RMSE)分别为:9.7168×10-4、 1.2508×10-4、 3.3159×10-4、1.9188×10-3.(2)以4个元素作为预测因子时,预测值和实测值的决定系数(R2)为...  相似文献   
3.
以2020年1—12月太湖主要入湖河流殷村港水质自动监测站的监测数据及2020年太湖水位资料为依据,构建了一维水量水质耦合数学模型,建立了入河污染负荷通量与入湖控制断面水质响应关系,以入太湖控制断面殷村港站达Ⅲ类水质水为目标,模拟计算了殷村港站主要污染物入湖水质变化过程。结果表明,殷村港站高锰酸盐指数、氨氮、总磷等水质指标浓度最大值均明显的降低,其中氨氮浓度降低幅度相对较大,主要集中于3—6月;高锰酸盐指数和总磷日均入河污染负荷通量变化相对较小,氨氮日均入河污染负荷通量降低幅度相对较大;殷村港站高锰酸盐指数、氨氮、总磷等水质指标年入河污染负荷削减量分别为24.17,41.43,3.87 t。提出,基于核算出的削减量需进一步结合污染负荷通量过程和污染源溯源分析,确定不同水质指标下入河污染负荷控制方向,为科学合理规划殷村港主要污染物的入河污染负荷总量控制提供科学依据。  相似文献   
4.
基于探索性数据分析的汉丰湖富营养化驱动因子研究   总被引:2,自引:0,他引:2  
为了探究汉丰湖富营养化驱动因子和营养状况,基于2014年水质监测数据,应用探索性数据分析方法初步研究了汉丰湖水动力条件与环境因子的相关性、水质主成分、相关环境因子熵权和营养健康指数。回归分析结果表明:水位与透明度呈正相关,流量与DO呈负相关,与流速呈负相关的因子为Chla、CODMn、NH+4-N和DTP;主成分分析提取的3个主成分分别反映了营养盐、有机污染以及藻类信息;DO、TN和TP的熵权表明汉丰湖水体的富营养状况受制于耗氧有机污染和氮、磷营养盐;营养健康指数S1>S3>S6(湖心)>S7(湖尾)>S5(湖首)>S4>S2。汉丰湖水体营养状况介于中营养到轻富营养,其中南河营养状态较高,湖心营养程度高于湖首和湖尾。减少有机污染物、营养盐的输入和改善局部水域的水动力条件可抑制藻类生长,有利于防治富营养化。 关键词: 探索性数据分析;汉丰湖;富营养化;驱动因子;水动力条件;主成分;熵权;营养健康指数  相似文献   
5.
为了解泰州市冬季空气质量变化特征,于2013年12月27日—2014年1月7日对NO2,SO2,O3,CO,PM10和PM2.5进行了监测,结合地面气象资料和HYSPLIT轨迹模式分析了污染物的来源与传输过程。结果表明,观测期间AQI优良率仅为25%,PM10和PM2.5日均值超标率分别为58.3%,75.0%;有机碳是泰州市ρ(PM2.5)中最高的化学组分,其次是富钾和元素碳。PM2.5主要来源为汽车尾气、工业源、燃煤,分别占来源比例21.76%,16.52%,15.54%。局地污染源和不利气象条件是造成大气污染的主要原因。  相似文献   
6.
针对《环境空气质量指数(AQI)技术规定(试行)》(HJ 633-2012)中对空气质量AQI实时发布存在的欠缺,从增加颗粒物1 h浓度的AQI分级浓度限值及颗粒物24 h滑动平均值计算方法改进着手,解决PM2.5和PM10的24 h滑动平均值实时延迟、1 h平均值代替24 h滑动平均值偏高等问题。  相似文献   
7.
以天津市海河上游河段为研究对象,模拟计算暴雨径流由二级河道排入海河干流后所造成的影响。采用EFDC(Environmental Fluid Dynamics Code)模型建立了海河干流上游河段的水动力和水质模型。在不同降雨重现期和干流入口流量的情况下,模拟了二级河道排放污染物COD、DO、NH3-N和TP等在海河干流的迁移转化规律。降雨重现期选取0.5 a、1 a、2 a、5 a、10 a和50 a。海河干流入口流量选取0、10 m3/s、20 m3/s、30 m3/s、50 m3/s、100 m3/s、150 m3/s和200 m3/s。海河干流的柳林控制断面为水质控制断面。当降雨重现期为10 a、干流入口流量为0时,柳林控制断面处COD、NH3-N和TP质量浓度分别超标73%、47%和197%,DO质量浓度只有3.16mg/L,水体污染严重。在保证柳林控制断面处水质满足水质要求的前提下,确定了各二级河道排干水质要求拟合曲线。当固定降雨量时,干流入口流量越小,二级河道排干水质的控制指标就越严;当固定干流入口流量时,降雨量越大,二级河道排干水质的控制指标就越严。根据二级河道排干水质控制指标,可计算各二级河道的排干水体的总截污量和DO补充量,为汛期海河水环境保护提供理论指导。  相似文献   
8.
鄱阳湖主湖区与碟形湖水位变化及其对水质的影响   总被引:1,自引:0,他引:1  
水位作为鄱阳湖重要的水文因子,对鄱阳湖水动力过程和水质变化具有重要影响。根据2014~2015年鄱阳湖主湖区和碟形湖水位、水质监测数据,分析了主湖区和碟形湖水位及主要水质指标的年内变化特征,阐述了主湖区和碟形湖水质对水位的响应特征。结果表明:(1)丰水期碟形湖与主湖区联通,碟形湖水位与主湖区水位呈直线型相关,枯水期碟形湖水位高于主湖区,主湖区年内月平均水位变异系数为0.13,而碟形湖年内月平均水位变异系数为0.08;(2)丰水期,主湖区和碟形湖的氮磷比分别为19.29和46.27,枯水期主湖区和碟形湖水体的氮磷比分别为17.88和40.39;(3)鄱阳湖主湖区水质主要指标与水位的相关性显著强于碟形湖,主湖区总氮、氨氮、总磷和溶解氧均与水位呈负相关性,而碟形湖中只有p H与水位有相关性;(4)枯水季节,碟形湖水体具有较高的总氮,而鄱阳湖主湖区则具有较高的总磷和氨氮。总之,枯水期进行合理的水位调控能够有效降低富营养化风险。  相似文献   
9.
10.
据新华社3月1日,《中华人民共和国刑法修正案(十一)》(以下简称《刑法修正案(十一)》)开始施行。《最高人民法院、最高人民检察院关于执行〈中华人民共和国刑法〉确定罪名的补充规定(七)》同日施行,明确了多个新罪名,包括妨害安全驾驶罪,强令、组织他人违章冒险作业罪,危险作业罪,高空抛物罪等。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号