首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16415篇
  免费   839篇
  国内免费   1388篇
安全科学   807篇
废物处理   191篇
环保管理   3353篇
综合类   10166篇
基础理论   1860篇
污染及防治   531篇
评价与监测   426篇
社会与环境   1103篇
灾害及防治   205篇
  2024年   70篇
  2023年   347篇
  2022年   470篇
  2021年   656篇
  2020年   648篇
  2019年   593篇
  2018年   283篇
  2017年   432篇
  2016年   546篇
  2015年   673篇
  2014年   1499篇
  2013年   1163篇
  2012年   1039篇
  2011年   1000篇
  2010年   875篇
  2009年   1019篇
  2008年   1142篇
  2007年   949篇
  2006年   766篇
  2005年   605篇
  2004年   544篇
  2003年   699篇
  2002年   550篇
  2001年   393篇
  2000年   330篇
  1999年   215篇
  1998年   168篇
  1997年   144篇
  1996年   148篇
  1995年   119篇
  1994年   100篇
  1993年   76篇
  1992年   83篇
  1991年   82篇
  1990年   92篇
  1989年   110篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
作为统筹保护与发展的创新工作模式,生态保护红线制度得到国家重视和国际社会高度评价。加强生态保护红线监管,需要围绕“功能不降低、面积不减少、性质不改变”的总体目标要求,统筹生态系统与人为活动监管,提升生态保护红线监管能力,加大生态监测评估和执法考核,不断提升生态系统多样性、稳定性和持续性,强化生态保护红线对经济社会发展的支撑作用,推动建设人与自然和谐共生的现代化。  相似文献   
2.
箭型固相微萃取技术是近几年发展起来的一项新型样品前处理技术,灵敏度高,机械性能好,无需使用有机溶剂,利用该技术对生活饮用水中的异味物质进行富集,然后通过三重四极杆气质联用系统进行高通量筛查和定量分析.对萃取过程中的萃取温度、萃取时间、进样口解吸的深度等影响因素进行了优化.发现萃取头在进样口进行解吸时插入的深度对解吸速度和效率有显著的影响.采用优化的参数建立了57种异味物质的定量测定方法.方法验证结果显示,该方法灵敏度高,相比于传统的固相微萃取方法,检测限下降1个数量级;方法准确度高,所有化合物的线性良好,线性相关系数能达到0.99以上;方法重复性很好,实际水样加标水平10 ng·L-1,重复测定10次,所有化合物的RSD值均小于20%,90%以上的化合物RSD小于10%.该方法各项性能均满足生活饮用水异味物质的检测要求,并且用于实际水样加标检测,无基质干扰的情况.  相似文献   
3.
新型冠状病毒肺炎(Coronavirus disease 2019,COVID-19)疫情中,物理法消毒和化学法消毒是较为常用的消毒方式.常用化学消毒剂包括过氧化物类消毒剂和含氯消毒剂,因其消杀效率高、操作简便等优点而被广泛使用.然而,过量使用消毒剂会导致消毒剂残留,并产生消毒副产物,进而引发生态与健康危害.因此,需要规范使用空气消毒方式,并需深入研究其在多种环境介质中引发的健康与生态安全风险.本文总结了空气传播病原微生物、国内外空气微生物相关标准、常用空气消毒方式及其灭活效果、残留消毒剂和消毒副产物的生态及健康危害,并展望了未来的发展趋势.  相似文献   
4.
生态保护红线是国家和区域必须要严格保护的生态空间,是国家生态安全的底线和生命线。为切实守护好生态保护红线,维护国家生态安全,有效规范生态保护红线监督工作,近日生态环境部制定印发《生态保护红线生态环境监督办法(试行)》。本文从生态保护红线生态环境监督的政策背景、战略意义、基本原则、核心任务等方面进行解读,为全国各地区推动构建生态保护红线生态环境监督体系提供参考。  相似文献   
5.
纳米材料因其比表面积大和表面活性高,在水处理领域表现出了极具潜力的发展前景。利用空间限域结构来固定和分散纳米材料可有效解决纳米材料易团聚失活、操作分离困难和潜在环境风险等问题。文章综述了具有限域结构的纳米复合材料制备方法及其对水中污染物吸附性能的研究进展,从限域空间内纳米颗粒的尺寸调控与污染物的富集、限域空间中特异性的污染物分子结构和纳米材料晶体结构等多方面详细分析了纳米限域效应的环境行为及其对水环境中污染物去除的重要意义。根据分析可知,限域结构中的吸附机理、纳米复合材料在真实环境体系下的应用、材料的环境与健康风险等是未来该领域研究的重要方向和热点内容。  相似文献   
6.
绿化屋顶的降温节能效益已有诸多文献报导,但专门针对夏热冬冷地区不同屋顶绿化模式的全年能耗模拟研究并不多见.以南京为例,采用EnergyPlus模型分析粗放、半密集、密集3类典型屋顶绿化的全年建筑能耗削减效应及季节规律,基于降温节能价值开展成本效益分析.结果 表明,屋顶绿化能够通过蒸散与隔离作用调节建筑屋顶表面温度,夏季以降温为主,最大降温幅度为29.3℃,冬季以保温为主,最高升温幅度为13℃.夏冬两季屋顶表面温度的降低/升高分别引起建筑制冷/热负荷的削减:粗放、半密集、密集3种绿化屋顶夏季制冷负荷削减率分别为-0.4%、2%和2.4%,冬季制热负荷分别降低16.5%、23.1%和28.3%,全年建筑能耗削减率为1.9%、4.9%和5.9%,其中,顶层能耗削减占削减总量的11%~71%.成本效益分析结果表明,密集型屋顶绿化的财务净现值最大、投资回报率最高,但3类绿化屋顶在40年生命周期内均无法通过能耗削减效益收回投资成本.研究结果可为同气候区屋顶绿化设计与推广提供参考.  相似文献   
7.
8.
利用湖北省1710份农户的微观数据,运用Double-hurdle模型,实证分析土地细碎化对农户环境友好型技术采纳决策的影响.研究表明:(1)总体来说,土地细碎化对农户是否采纳环境友好型技术,以及采纳密度(采纳环境友好型技术的面积/总农地经营面积)均产生负向影响;(2)对男性和低自我效能感知主体而言,土地细碎化对其是否采纳环境友好型技术决策和采纳密度决策均产生负向影响;而对女性和高自我效能感知主体,则未产生显著影响;(3)土地细碎化对强社会网络主体的是否采纳决策产生影响,对其采纳密度决策不产生影响,土地细碎化对弱社会网络主体的是否采纳和采纳密度决策均产生负向影响;(4)土地细碎化对低农业收入依赖主体的采纳密度决策以及高农业收入依赖主体的是否采纳决策产生负向影响,对低农业收入依赖主体的是否采纳决策以及高农业收入依赖主体的采纳密度决策不产生影响;(5)土地细碎化对平原地区农户的是否采纳决策不产生影响,对其采纳密度决策产生影响,土地细碎化对非平原地区农户的是否采纳和采纳密度决策均产生负向影响.据此,建议着力推进高水平良田建设,激励农户环境友好型技术采纳决策的政策制定需要充分考虑农户异质性影响,实施精准施肥政策,并充分考虑不同自然环境特征(如地形等)的影响,针对平原和非平原地区的农户,采取差异化的激励策略.  相似文献   
9.
县域国土空间生态修复是生态修复规划体系的重要一环,也是生态修复工程项目实施的直接上位指导性规划,基于小流域尺度的生态修复分区研究可以为黄土高原地区县域生态修复分区的理论和实践提供有益参考。以汾河上游为例,首先,基于数字高程模型提取地形特征的方法确定了89个小流域单元,进而定量评估水源涵养、水土保持、生物多样性、食物供给四种典型生态系统服务,综合识别区域主导生态功能,据此划定5个生态功能分区;然后,以生态功能分区内生态群落为基础,通过对不同生态群落的生态功能统计比较,划分12个生态修复分区;最后,将小流域合并得到沟域生态系统单元,进而划分了25个生态修复工程分区统筹后期工程项目实施,并提出相应的生态修复策略。本文提出新的生态修复分区思路,以期为县域国土空间生态修复规划的编制提供指引。  相似文献   
10.
微塑料在全球海洋水体及沉积物中广泛存在,然而关于近海养殖海区的微塑料污染特征鲜有报道,本研究调查了中国近海养殖海区茅尾海水体和沉积物中微塑料的分布特征并初步对其微塑料污染进行风险评估.结果表明,茅尾海区域广泛分布着微塑料,茅尾海水体中微塑料的平均丰度为(2.01±1.23) n·m-3,泡沫(60.1%)是主要的类型.沉积物中的微塑料平均丰度为(22.4±19.6) n·kg-1,薄片(50%—100%)在采样点中占主要部分.茅尾海水体、沉积物中的微塑料粒径都以1—5 mm为主(33.3%—100%),水体和沉积物中的微塑料主要来自钦江的输入、旅游活动以及海水养殖活动.通过风险评估模型初步得出,茅尾海区域微塑料的污染水平属于中等偏低水平,水体中微塑料整体污染风险等级显著高于沉积物,生态风险等级分别属于Ⅲ级(较高风险)和Ⅱ级(较低风险).风险指数最高的点位于茅尾海入海河流钦江入海处,达到了Ⅳ级(高风险),各沉积物采样点的风险等级主要集中在Ⅰ—Ⅱ级,属于较低风险.危害评分高的聚合物聚丙烯腈(Polyacrylonitrile,PAN)是水体中微塑...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号