首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7299篇
  免费   2191篇
  国内免费   1118篇
安全科学   291篇
废物处理   109篇
环保管理   511篇
综合类   5939篇
基础理论   2381篇
污染及防治   559篇
评价与监测   597篇
社会与环境   178篇
灾害及防治   43篇
  2024年   13篇
  2023年   302篇
  2022年   360篇
  2021年   361篇
  2020年   423篇
  2019年   475篇
  2018年   271篇
  2017年   284篇
  2016年   434篇
  2015年   455篇
  2014年   731篇
  2013年   502篇
  2012年   524篇
  2011年   540篇
  2010年   462篇
  2009年   509篇
  2008年   516篇
  2007年   451篇
  2006年   358篇
  2005年   306篇
  2004年   241篇
  2003年   253篇
  2002年   234篇
  2001年   179篇
  2000年   175篇
  1999年   122篇
  1998年   137篇
  1997年   116篇
  1996年   142篇
  1995年   137篇
  1994年   106篇
  1993年   112篇
  1992年   87篇
  1991年   92篇
  1990年   96篇
  1989年   78篇
  1988年   7篇
  1987年   12篇
  1986年   4篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
1.
为了解重庆汞矿区耕地土壤-农作物重金属污染状况,在研究区采集水稻45件、玉米32件、红薯18件及其种植土壤样品90件,分析测定As、Cd、Cr、Cu、Hg、Ni、Pb、Zn等8种重金属含量,采用地累积指数法、潜在生态危害指数法和健康风险评估模型,对该区土壤重金属污染程度、生态风险和食用农作物的健康风险进行评估.结果表明,研究区水稻田、玉米地和红薯地土壤重金属平均含量均高于重庆市土壤背景值,呈现不同程度的积累;Cd、Hg、As超出国家农用地土壤污染风险筛选值,水稻田土壤超标率分别为88.9%、62.2%、11.1%,玉米地土壤超标率分别为81.3%、43.8%、18.8%,红薯地土壤超标率分别为100%、44.4%、16.7%.与食品安全国家标准相比,部分水稻和玉米中Cd超标,超标率分别为20%、15.6%;部分红薯中Cd、Cr和Pb超标,超标率分别为22.2%、5.56%和27.8%.地累积指数法评价显示土壤Hg污染严重,以中污染和极重污染为主,As、Cd总体处于轻污染水平,Cr、Cu、Ni、Pb、Zn总体呈无-轻污染状态.潜在生态风险评价显示,Hg、Cd、As为研究区土壤主要生态危害...  相似文献   
2.
由于不同重金属的土壤化学性质迥异,同步钝化土壤复合重金属成为土壤污染修复亟待解决的瓶颈问题. 采用土壤盆栽试验,以自然Cd、Pb、Cu、As复合污染土壤为研究材料,设置空白对照(CK)和调理剂对照(石灰石)两个对照,研究了3种硅基调理剂〔(硅酸钾、锰-硅酸钾(氯化锰10%+硅酸钾90%)、硫-硅酸钾(硫氢化钠2.5%配施+硅酸钾97.5%)〕对土壤重金属形态转化,水稻吸收Cd、Pb、Cu、As和养分元素,以及水稻生长和抗氧化胁迫反应的影响. 结果表明:3种硅基土壤调理剂的降Cd效果均显著高于调理剂对照(石灰石). 与空白对照(CK)相比,硅酸钾、锰-硅酸钾和硫-硅酸钾3种硅基调理剂糙米Cd含量分别显著(P<0.05)降低30.0%、45.5%和35.7%,糙米Pb含量分别显著(P<0.05)降低56.6%、62.6%和37.1%,其中锰-硅酸钾配施降Cd、降Pb效果最佳,但3种调理剂降Cu和降As效果不显著. 各调理剂均能促进水稻的生长、养分吸收和抗氧化能力,提高土壤pH,降低土壤可交换态Cd、Pb比例. 研究显示,硅酸钾及与锰、硫配施均能显著降低糙米中的Cd、Pb含量并促进作物生长,可用于水稻Cd、Pb复合污染防控.   相似文献   
3.
为探明固原市农田土壤中微塑料分布特征,通过现场采集调查、显微镜观察和傅里叶变换红外光谱等方法分析了固原市农田土壤中微塑料的丰度、类型、颜色、大小和外形等特征,用污染负荷指数法(PLI)评估了微塑料污染风险.结果表明,固原市农田土壤(耕作层)微塑料丰度为186.32~1286.24 n ·kg-1,设施农业土壤微塑料丰度分别较非设施农业有膜和无膜种植土壤显著增加35.56%和228.91%,耕作层微塑料丰度是犁底层的0.31倍.PE (26.42%~62.83%)和PP (27.64%~42.62%)为主要的微塑料类型,设施农业土壤微塑料种类数显著大于非设施农业.<100 μm微塑料占32.21%~42.52%,而>1000 μm只占0.28%~12.31%,耕作层微塑料粒径比犁底层高47.39%,设施农业土壤微塑料粒径最大,非设施无膜种植最小.微塑料形状主要为薄膜、纤维、碎片和微珠,其中纤维状丰度最大,薄膜状次之.共检测出7种颜色的微塑料,以白色和黑色为主.研究区污染风险总体为低风险,设施农业土壤微塑料污染风险最高.研究结果将为我国农田土壤微塑料污染评估及微塑料土壤环境行为提供数据参考.  相似文献   
4.
多环芳烃(PAHs)是焦化污染场地中常见的污染物. 微波修复具有加热均匀、能耗低、耗时短的特点,在土壤修复中有较好的应用前景. 该研究选择氧化铁矿物含量低的污染土壤作为试验对象,分别添加10%的针铁矿、赤铁矿和磁铁矿,对添加前后土壤的吸波性能、升温特性及PAHs去除率进行研究,评价氧化铁矿物在微波修复PAHs污染土壤中的作用. 结果表明:土壤中加入氧化铁矿物能够改善其吸波性能,提高复介电常数、复磁导率的实部值和复磁导率的虚部值,最大增幅分别为31.79%、12.24%和73.91%. 氧化铁矿物的加入使得土壤产生自由基,促进土壤极化现象,增强吸波能力. 氧化铁矿物还能够改善土壤的升温特性,当微波功率为600 W时,添加了针铁矿、赤铁矿、磁铁矿的土壤所达到的最高温度分别是原土壤的1.23、1.10和1.07倍. 随着温度的升高,PAHs去除率随之升高,分别是原土壤的1.45、1.31和1.48倍. 研究显示,氧化铁矿物的添加能够提高微波修复PAHs的效能.   相似文献   
5.
石油污染土壤是一个严重的生态环境问题,甚至会威胁公众健康。石油污染土壤的微生物修复技术因低廉、绿色和无二次污染等备受关注。为了强化石油污染土壤生物修复技术,筛选高效的石油降解菌种,该研究从大庆石油污染土壤中筛选出1株高效石油降解菌,经16S rRNA鉴定分析为琼式不动杆菌,该菌株对1%的石油的降解率高达60.2%。利用扫描电镜分析该菌株在石油污染土壤降解前后的形态变化原因,并通过改变降解环境的盐度、pH以及接种量的单因素实验,探究3种因素对细菌的活性、生长量和降解率的影响。结果表明,该细菌形态呈节杆状,且在降解过程中产生生物表面活性剂并分泌一定的胞外聚合物;在石油浓度为1%的条件下,该菌株对盐度的耐受性在4%以下,适应的p H范围为5~9,投菌量在15~20 mL时,降解效果较好。  相似文献   
6.
为查明老工业城市土壤-作物系统的重金属环境地球化学特征,测试和分析石嘴山市水稻、小麦和玉米籽实及其根系土重金属含量和形态,利用统计学方法、风险评价编码法(RAC)、生物富集系数法(BCF)、土壤和农产品综合质量影响指数法(IICQ)及ArcGIS空间插值法开展土壤-作物系统重金属的迁移累积特征剖析及风险协同评价.结果表明,根系土中重金属ω(As)、ω(Cd)、ω(Cr)、ω(Cu)、ω(Hg)、ω(Ni)、ω(Pb)和ω(Zn)均值分别为12.56、 0.19、 63.48、 23.52、 0.038、 28.86、 21.68和69.47mg·kg-1,与宁夏土壤背景值相比呈一定程度的累积,其中以Cd和Hg累积效应最为显著,但均低于农用地土壤污染风险筛选值;配套作物中上述8种重金属含量均值分别为0.014 9、 0.011 2、 0.075、 6.7、 0.001 5、 0.67、 0.042 7和20.48mg·kg-1,与食品中污染物限量相比,作物中As、 Pb和Cr点位超标率分别为4%、 3%和1%,其余元素均未超标;相比水稻和小麦,...  相似文献   
7.
为研究陕西省安康市富硒核心区—岚皋县高硒土壤的空间分布及主要农作物硒含量特征和主要来源,本文在岚皋县采集了767个表层土壤样品,其中在高硒区(佐龙镇和民主镇)按行政村地块为单元,共加密采集了409个土样以及18个土豆、35个玉米和14个基岩样品,测试了其总硒含量.结果表明:(1)岚皋县北部典型高硒区—佐龙镇和民主镇的土壤硒含量平均值分别为3.38 mg/kg (范围为0.02~37.39 mg/kg)和3.11 mg/kg (范围为0.05~16.96 mg/kg),均远高于中国(0.29 mg/kg)和全球(0.40mg/kg)表层土壤硒含量的背景值.(2)佐龙镇和民主镇表层土壤硒含量大于0.40 mg/kg的面积分别占各自乡镇面积的99.18%和75.79%.(3)佐龙镇中部地区的硒含量较高,民主镇中部和东南部地区的硒含量较高.高硒区的土豆(硒含量范围为0.04~1.78 mg/kg,平均值为0.49 mg/kg)和玉米(硒含量范围为0.01~2.82 mg/kg,平均值为0.69 mg/kg)的富硒率均超过68%.(4)高硒区土壤富硒的最主要原因是晚前寒武纪—寒武纪的富硒地层大面...  相似文献   
8.
张军  李旭  刘磊玉  李雨茹 《环境科学》2023,44(12):6921-6932
为探究某燃煤电厂污染物排放中重金属对周边农田土壤环境的影响,采用辐射环形法,以电厂烟囱为中心,布设31个农田土壤采样点.使用电感耦合等离子体质谱仪(ICP-MS)测定土壤中10种重金属含量,分析土壤中重金属含量特征及潜在生态风险,基于地统计空间插值和AERMOD扩散模型对重金属空间分异情况和污染特征进行探究,并运用PMF受体模型对重金属进行源解析.结果表明:①燃煤电厂周边农田土壤重金属ω(Pb)、ω(Mn)、ω(Zn)、ω(Cr)、ω(Ni)、ω(Cu)、ω(As)、ω(Co)、ω(Hg)和ω(Cd)的平均值分别为414.46、286.38、155.22、69.54、55.77、53.48、31.73、19.86、0.78和0.71 mg·kg-1,其中Hg、Pb、Cd、As、Zn、Cu、Co、Cr和Ni的含量均超过陕西省土壤背景值,分别为背景值的26、19.36、7.88、2.83、2.23、2.49、1.87、1.11和1.93倍,元素Cd、Cr、Ni和Zn的高值区出现在电厂西北方向.②燃煤电厂周边农田土壤重金属潜在生态风险指数(RI)的均值为714.53,整体处于很强的生态风险水平,并在千河火车站、石油天然气公司附近出现高值富集区,Hg元素的单项潜在生态风险指数(Ei)为520.92,处于极强的生态风险水平.③燃煤电厂周边农田土壤重金属主要来源为煤炭燃烧的降尘源(32.16%)、工农业活动源(19.78%)、自然源(26.25%)和交通源(21.81%).土壤重金属含量较高值均分布在距电厂1~2 km范围内,重金属含量在距离电厂1 km范围内较小,在1~2 km范围逐渐增大,大于2 km后又呈逐渐减小趋势.研究得出的电厂周边农田土壤重金属空间分异情况及富集特征,可为开展土壤污染治理提供理论及数据支撑.  相似文献   
9.
为探讨有机物料添加对植物修复铬污染耕地土壤的强化效果,在联栋温室中进行室内培养试验和盆栽试验,利用Tessier连续提取法对添加牛粪、羊粪和玉米秸秆后的土壤中铬形态分布进行分析.通过S-N-K法、Pearson相关分析等研究添加有机物料后,紫羊茅和羽衣甘蓝对修复土壤的铬富集系数及铬去除率的影响,并探讨其与铬形态间的相互关系.结果表明,添加牛粪或羊粪的土壤中交换态铬分别比空白处理增加1.30%和0.98%.添加牛粪可显著提高紫羊茅和羽衣甘蓝的根干重和茎叶干重,添加羊粪或玉米秸秆仅可显著提高富集植物的茎叶干重,对根干重无显著影响.添加羊粪或牛粪处理的紫羊茅和羽衣甘蓝,修复土壤的铬富集系数均显著高于空白处理.添加玉米秸秆紫羊茅修复土壤的铬富集系数显著高于空白处理,羽衣甘蓝修复土壤的铬富集系数与空白处理无显著差异.3种有机物料的添加均能增强羽衣甘蓝和紫羊茅对铬污染土壤的修复效果,其中添加牛粪诱导强化羽衣甘蓝修复铬污染土壤的效果最佳,对土壤中铬的去除率达到19.62%.紫羊茅和羽衣甘蓝修复土壤的铬富集系数及铬去除率均与土壤交换态铬显著正相关,与碳酸盐结合态铬比例呈极显著负相关.有机物料,尤其是养殖废弃物的添加,能有效提高土壤中可交换态铬比例,进而提高植物修复铬污染土壤的效率.  相似文献   
10.
为探讨冶炼废渣中重金属对土壤及地下水的影响,开展了90 d持续和间歇淋溶下锌挥发窑渣浸出液中重金属在场地剖面土柱的迁移模拟实验,分析淋出液Cd、 Cu、 Pb和Zn浓度及其在土壤剖面的累积、赋存形态和粒径分布特征,并探讨重金属在土壤剖面滞留机制.结果表明,土柱淋出液重金属浓度在淋溶初期达到峰值后迅速降低,Cd浓度超过《地下水环境质量标准》(GB/T 14848-2017)Ⅳ类水质限值(0.1 mg·L-1),地下水存在Cd污染风险.剖面土壤对废渣中重金属固持量大,Cd、 Cu、 Pb和Zn主要累积在浅层土壤(0~10 cm),分别为淋溶前土壤的237~429、 1.25~16.2、 1.38~2.31和1.79~3.17倍;持续淋溶下废渣重金属较间歇淋溶的迁移距离较长,Cd在土柱深层有明显累积.土壤粗颗粒(0.5~2.0 mm)对Cd、 Cu和Zn累积总量的贡献率较大,而Pb更易累积在<0.25 mm粒径.BCR顺序提取结果显示,浅层土壤累积的Cd、 Cu和Zn主要以弱酸提取态为主,占比分别高达62.4%~76.7%、 72.0%~95.8%和67.6%~8...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号