首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   829篇
  免费   90篇
  国内免费   156篇
安全科学   25篇
废物处理   20篇
环保管理   44篇
综合类   405篇
基础理论   265篇
污染及防治   44篇
评价与监测   272篇
  2024年   6篇
  2023年   28篇
  2022年   41篇
  2021年   47篇
  2020年   60篇
  2019年   57篇
  2018年   28篇
  2017年   26篇
  2016年   45篇
  2015年   50篇
  2014年   86篇
  2013年   72篇
  2012年   70篇
  2011年   79篇
  2010年   54篇
  2009年   55篇
  2008年   48篇
  2007年   39篇
  2006年   18篇
  2005年   23篇
  2004年   25篇
  2003年   20篇
  2002年   13篇
  2001年   14篇
  2000年   6篇
  1999年   9篇
  1998年   5篇
  1997年   8篇
  1996年   9篇
  1995年   10篇
  1994年   7篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1987年   1篇
排序方式: 共有1075条查询结果,搜索用时 18 毫秒
1.
田婧宜  杨方星 《环境化学》2023,(7):2273-2281
过敏原的硝基化会引起其致敏潜能的增强,进而带来更大的致敏性健康风险.过敏原蛋白质通常含有多个酪氨酸硝基化位点,分析过敏原硝基化的位点选择性是探究硝基化对过敏原致敏性影响的重要基础.本文以尘螨过敏原为研究对象,建立了基于超高效液相色谱-串联质谱(UPLC-MS/MS)同时定量分析3种尘螨过敏原(Der f 1、Der p 1和Der p 2)的13个酪氨酸位点硝基化程度的方法,并应用于分析3种尘螨过敏原在过氧亚硝酸盐硝基化作用下的位点选择性.结果表明,3种尘螨过敏原均发生了位点特异性的硝基化,Y195、Y37和Y92分别为Der f 1、Der p 1和Der p 2中反应活性最高的硝基化位点.尘螨过敏原位点选择性的硝基化表明,在评价硝基化尘螨过敏原的致敏性变化时应当考虑其位点特异性的硝基化状况.  相似文献   
2.
箭型固相微萃取技术是近几年发展起来的一项新型样品前处理技术,灵敏度高,机械性能好,无需使用有机溶剂,利用该技术对生活饮用水中的异味物质进行富集,然后通过三重四极杆气质联用系统进行高通量筛查和定量分析.对萃取过程中的萃取温度、萃取时间、进样口解吸的深度等影响因素进行了优化.发现萃取头在进样口进行解吸时插入的深度对解吸速度和效率有显著的影响.采用优化的参数建立了57种异味物质的定量测定方法.方法验证结果显示,该方法灵敏度高,相比于传统的固相微萃取方法,检测限下降1个数量级;方法准确度高,所有化合物的线性良好,线性相关系数能达到0.99以上;方法重复性很好,实际水样加标水平10 ng·L-1,重复测定10次,所有化合物的RSD值均小于20%,90%以上的化合物RSD小于10%.该方法各项性能均满足生活饮用水异味物质的检测要求,并且用于实际水样加标检测,无基质干扰的情况.  相似文献   
3.
基于气相色谱-质谱联用(GC-MS)法结合固相萃取(SPE)前处理技术,建立了水中4种除草剂氯草定、阿特拉津、乙草胺和异丙甲草胺残留的分析方法,于2018年春(4、5月)、秋(9、10月)和冬(1、3月)季对太湖流域望虞河西岸九里河水体中4种除草剂的污染现状进行调查分析。结果表明,4种除草剂的加标回收率为71. 2%~108%,RSD均10%,方法检出限为3. 5~6. 0 ng/L。九里河水体中氯草定、阿特拉津、乙草胺和异丙甲草胺4种除草剂质量浓度分别为未检出~0. 025 7,0. 019 1~1. 19,未检出~0. 026 0和未检出~0. 094 3μg/L。4种除草剂中阿特拉津最高值接近《地表水环境质量标准》(GB 3838—2002)限值,其他3种其值较低,氯草定首次在太湖流域水体中检出。  相似文献   
4.
作为新兴生物燃料,大分子醇类燃料在低压下的火灾安全基础迫切需要得到深入研究。热解过程作为火灾过程的初始阶段直接控制着火过程,火灾中碳烟颗粒的产生也依赖于热解反应,因此可燃物的低压热解研究在其低压火灾基础研究中具有重要意义。利用同步辐射真空紫外光电离质谱方法研究了异戊醇在0.2atm下的流动反应器热解,探测到了20余种热解产物,包括烯丙基自由基和C_4H_8O、C_5H_8、C_6H_6等同分异构体,并测量了其摩尔分数。基于实验结果,对燃料分解路径和主要产物的生成及消耗路径进行了探讨。与本组之前正戊醇热解实验的对比表明,由于存在支链结构,异戊醇在热解中比正戊醇更容易产生戊烯、丁烯和丙烯,但更少地产生乙烯。此外,异戊醇在热解中能够生成更多的丙炔和丙二烯等环状化合物前驱体,令其苯和1,3-环戊二烯的生成量更高,表明异戊醇比正戊醇更易于生成多环芳烃和碳烟。  相似文献   
5.
采用高效液相色谱-串联质谱(HPLC-MS/MS)检测,建立了地表水中13种药物及个人护理品的测定方法。水样用盐酸与氢氧化钠溶液调p H值至7.0左右,过固相萃取小柱进行富集,用14 m L甲醇洗脱。以C18柱为分离柱,0.01%甲酸的甲醇-0.01%甲酸水溶液为流动相,目标物在10 min内分离,在0.50~250μg/L范围内,13种化合物峰面积与内标物质峰面积之比与质量浓度的线性关系良好(0.99),检出限在0.05~0.5 ng/L范围内。基质加标实验结果表明,13种化合物在水中的回收率分别在56.2%~123.2%之间(加标水平5 ng/m L)和58.0%~107.8%(加标水平50 ng/m L),相对标准偏差在1.60%~19.9%(n=6)之间。应用该方法测定了从2条纳污河流采集的10份水样,结果表明,除美托诺尔和普洛萘尔未被检出外,其余11药物的检出频率在30%~100%之间。在13种目标物质中,咖啡因的检测浓度最高达287.5ng/L,舒必利次之,为277.5 ng/L。本方法快速、准确,适用于地表水中PPCPs类的快速测定。  相似文献   
6.
采用全二维气相色谱-飞行时间质谱法(GC×GC TOF-MS)分析了混标样品Aroclor 1260、Aroclor 1254、Aroclor 1242中的多氯联苯(PCBs)单体,考察了在复杂体系下对7种PCBs指示剂的分离能力。结果表明,与优化柱系统的分离效果相比,136种单体的混标样品中共分离出121种单体,7种指示剂经一维和二维的保留时间及质谱定性,在121种单体的2D斑点图中清晰可辨。全二维对于复杂体系的PCBs和指示剂的分离表明其强大的分离能力和对于检测复杂体系中指示剂的分辨能力,对该类物质的定性和定量检测具有重要意义。  相似文献   
7.
通过色谱-质谱联用法(简称GC-MS),利用低温冷阱技术对大气中的VOCs进行浓缩富集,然后经过加热解吸分别至毛细管色谱柱和FID检测器及MS检测器,对大气中98种挥发性有机化合物(VOCs)进行分离、定性、定量测定。方法检出限为0.008×10-9~0.100×10-9(V/V);线性相关系数的平方值为0.992 7~1,相对标准偏差为4.0%~20.2%,总体标准偏差为0.154 2~0.952 1。  相似文献   
8.
建立了固相萃取-超高效液相-串联质谱法同时测定水环境中26种类固醇激素的分析方法。明确了取样体积为500 m L,Cleanert PEP为富集柱,乙酸乙酯为洗脱剂,甲醇为溶剂进行提取操作。选择了正离子模式,以0. 1%甲酸/甲醇-水为流动相,负离子模式以0. 1%氨水/乙腈-水为流动相,试样经AcquityTMUPLC BEH C18色谱柱分离后,选用质谱检测模式进行定性、定量分析。通过方法验证,26种类固醇激素的方法检出限为0. 3~1. 5 ng/L,测定下限为1. 2~6. 0 ng/L,代表性样品测定结果的相对标准偏差为2. 6%~13. 7%(n=6),加标回收率为71. 2%~121%。该方法操作便捷,灵敏度高,精密度和准确度良好,可适用于水环境中多种痕量、超痕量类固醇激素的定性定量分析。  相似文献   
9.
建立了土壤和沉积物中8种多溴联苯醚(PBDEs,BDE-28、BDE-47、BDE-99、BDE-100、BDE-153、BDE-154、BDE-183和BDE-209)加速溶剂同时萃取和净化-气相色谱-三重四极杆串联质谱(ASE-GC-MS-MS)的分析方法。通过优化加速溶剂萃取与弗罗里硅土在线净化和串联质谱多反应监测模式的条件,较好地去除基质干扰,并提高了三重四极杆串联质谱定性的准确性及定量的灵敏性。该方法采用改进的色谱柱能同时分析包括高溴代联苯醚BDE-209在内的8种PBDEs,其浓度范围为1~100 ng/mL(BDE-209为10~1 000 ng/mL),线性良好,线性回归系数均大于0.997。方法检出限为0.004~0.1 ng/g,方法回收率为75%~110%,方法精密度为2.4%~15.6%。适于批量处理土壤和沉积物中含有多组分痕量PBDEs的样品。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号