首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
环保管理   1篇
综合类   1篇
基础理论   1篇
污染及防治   1篇
评价与监测   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
ASD—ICP—MS联合快速测定土壤中部分金属元素   总被引:1,自引:0,他引:1  
土壤环境质量例行监测正在全国展开,如何准确快速分析土壤中的金属含量成为当务之急。采用HNO3-HCl-HF—HClO4体系在全自动消解仪(ASD)上对土壤进行前处理,以50.0μg/L的铑作内标,电感耦合等离子体-质谱仪同时测定《土壤环境质量标准》的7种元素:Cd、As、Cu、Ph、Cr、Zn、Ni。各元素的方法检出限为0.003~0.40mg/kg,相对标准偏差小于6.0%,土壤标样的测定值与标准值吻合。该方法简便快捷、灵敏度高、重现性好,为大批量土壤重金属元素含量的快速测定提供了可靠地消解-分析方法。  相似文献   
2.
采用HNO3-HCl-HF-HClO4体系在全自动消解仪消解土壤样品,以50.0μg/L的Rh作内标,用电感耦合等离子体-质谱仪同时测定《土壤环境质量标准》的7种元素Cd、 As、Cu、 Pb、 Cr、 Zn、 Ni。结果表明,土壤标样的测定值与标准值吻合,各元素对应的检出限和相对标准偏差分别为: Cd:0.002 mg/kg和3.6%, As:0.05 mg/kg和5.5%, Cu:0.10 mg/kg和2.9%, Pb:0.18 mg/kg和4.7%, Cr:0.25 mg/kg和2.2%, Zn:0.40 mg/kg和3.4%, Ni:0.20 mg/kg和3.8%。该方法简便快捷,灵敏度高,重现性好。  相似文献   
3.
杭州地区大气气溶胶光学特性高光谱研究   总被引:8,自引:2,他引:6  
利用ASD地物光谱仪对杭州地区的气溶胶光学特性进行了观测并结合同步观测的太阳分光光度计CE-318的数据对其精度进行检验.分析表明,在时间演变中.杭州市冬季气溶胶光学厚度值比夏季大,气溶胶光学特性的日进程变化比较明显;从空间分异上,杭州不同区域间的差异也比较显著;杭州地区大气的浑浊度系数和波长指数主要分布在0.02~0.2和0.2~2.6之间.在气溶胶光学厚度、浑浊度系数和波长指数等大气环境重要变量中,气溶胶光学厚度和浑浊度系数之间存在正相关,而气溶胶光学厚度和波长指数之间存在负相关.  相似文献   
4.
采用样品全自动消解系统(Automated Sample Digestion)对土壤样品进行前处理,采用ICP-AES对土样中的重金属元素一次性测定.通过优化实验,获得土壤中各种重金属的最佳消解条件.结果表明,经优化的消解程序A1能够快速、稳定消解土壤样品,并获得理想测试结果.经检验,ASD-ICP-AES联用的土样测...  相似文献   
5.
Volatile organic compounds at swine facilities: A critical review   总被引:3,自引:0,他引:3  
Ni JQ  Robarge WP  Xiao C  Heber AJ 《Chemosphere》2012,89(7):769-788
Volatile organic compounds (VOCs) are regulated aerial pollutants that have environmental and health concerns. Swine operations produce and emit a complex mixture of VOCs with a wide range of molecular weights and a variety of physicochemical properties. Significant progress has been made in this area since the first experiment on VOCs at a swine facility in the early 1960s. A total of 47 research institutions in 15 North American, European, and Asian countries contributed to an increasing number of scientific publications. Nearly half of the research papers were published by U.S. institutions.Investigated major VOC sources included air inside swine barns, in headspaces of manure storages and composts, in open atmosphere above swine wastewater, and surrounding swine farms. They also included liquid swine manure and wastewater, and dusts inside and outside swine barns. Most of the sample analyses have been focusing on identification of VOC compounds and their relationship with odors. More than 500 VOCs have been identified. About 60% and 10% of the studies contributed to the quantification of VOC concentrations and emissions, respectively. The largest numbers of VOC compounds with reported concentrations in a single experimental study were 82 in air, 36 in manure, and 34 in dust samples.The relatively abundant VOC compounds that were quantified in at least two independent studies included acetic acid, butanoic acid (butyric acid), dimethyl disulfide, dimethyl sulfide, iso-valeric, p-cresol, propionic acid, skatole, trimethyl amine, and valeric acid in air. They included acetic acid, p-cresol, iso-butyric acid, butyric acid, indole, phenol, propionic acid, iso-valeric acid, and skatole in manure. In dust samples, they were acetic acid, propionic acid, butyric acid, valeric acid, p-cresol, hexanal, and decanal. Swine facility VOCs were preferentially bound to smaller-size dusts.Identification and quantification of VOCs were restricted by using instruments based on gas Chromatography (GC) and liquid chromatography (LC) with different detectors most of which require time-consuming procedures to obtain results. Various methodologies and technologies in sampling, sample preparation, and sample analysis have been used. Only four publications reported using GC based analyzers and PTR-MS (proton-transfer-reaction mass spectrometry) that allowed continuous VOC measurement. Because of this, the majority of experimental studies were only performed on limited numbers of air, manure, or dust samples. Many aerial VOCs had concentrations that were too low to be identified by the GC peaks.Although VOCs emitted from swine facilities have environmental concerns, only a few studies investigated VOC emission rates, which ranged from 3.0 to 176.5 mg d−1 kg−1 pig at swine finishing barns and from 2.3 to 45.2 g d−1 m−2 at manure storages. Similar to the other pollutants, spatial and temporal variations of aerial VOC concentrations and emissions existed and were significantly affected by manure management systems, barn structural designs, and ventilation rates.Scientific research in this area has been mainly driven by odor nuisance, instead of environment or health concerns. Compared with other aerial pollutants in animal agriculture, the current scientific knowledge about VOCs at swine facilities is still very limited and far from sufficient to develop reliable emission factors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号