首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   2篇
  国内免费   5篇
安全科学   2篇
废物处理   1篇
环保管理   8篇
综合类   16篇
基础理论   6篇
污染及防治   43篇
评价与监测   7篇
社会与环境   11篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   9篇
  2010年   9篇
  2009年   11篇
  2008年   14篇
  2007年   4篇
  2005年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   8篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
1.
酸沉降破坏材料造成的经济损失的估算研究   总被引:3,自引:1,他引:3  
酸沉降对材料的破坏和其经济损失估算是国际上酸沉降研究领域听一个重要课题,国内在经方面的研究较少,文章通过对“两广酸沉降破坏材料造成的经济损失的估算”研究,提出了了一套较实用的经济损失估算方法。  相似文献   
2.
通过自由沉降和离心分离试验结果的比较,考察了加热离心分离法处理炼油厂含油焦化废水脱除固体颗粒的效果。结果表明,加热离心分离法大大改善了含油焦化废水的脱水和脱固性能,在加热到60~80℃时,75%以上的固体颗粒可被脱除  相似文献   
3.
浅谈混凝沉淀在炼油污水中的应用   总被引:1,自引:0,他引:1  
随着国家对环保的重视,为确保处理效果,混凝沉淀技术在一些炼油污水中得到应用,并取得了较好的效果。  相似文献   
4.
Indoor and outdoor particulate matter (PM0.3-10) number concentrations were established in two medieval churches in Cyprus. In both churches incense was burnt occasionally during Mass. The highest indoor PM0.5-1 concentrations compared with outdoors (10.7 times higher) were observed in the church that burning of candles indoors was allowed. Peak indoor black carbon concentration was 6.8 μg m−3 in the instances that incense was burning and 13.4 μg m−3 in the instances that the candles were burning (outdoor levels ranged between 0.6 and 1.3 μg m−3). From the water soluble inorganic components determined in PM10, calcium prevailed in all samples indoors or outdoors, whilst high potassium concentration indoors were a clear marker of combustion. Indoor sources of PM were clearly identified and their emission strengths were estimated via modeling of the results. Indoor estimated PM0.3-10 mass concentrations exceeded air quality standards for human health protection and for the preservation of works of art.  相似文献   
5.
Ammonium sulphate at six concentrations in simulated precipitation has been applied weekly over two years to Calluna vulgaris growing in peat soil. The nitrogen deposition treatments were chosen to embrace and exceed critical load. The growth and composition of the Calluna and the changes over time in the chemistry of the peat soil and its soil solution were monitored. In spite of significant increases in foliar nitrogen concentration in new shoots, especially in the first year, growth did not increase significantly in response to nitrogen treatment. Several factors could be contributing to the lack of significant growth response. (1) Increasing ammonium input significantly acidified the soil solution, which could adversely effect growth directly. (2) Foliar calcium concentration was reduced significantly in both years by the ammonium sulphate treatments, and more calcium was undoubtedly lost from the rooting zone at higher nitrogen inputs. (3) Foliar phosphate declined significantly between the first and second year, so lack of growth response might also reflect a phosphorus limitation. There was a distinctly visible darkening of the leaves in response to increasing ammonium applications, especially for the first year's growth, and the chlorophyll a and b concentrations in leaves from new growth at the three highest nitrogen treatments were significantly (at P <0.05) higher than those for the control. The pigment concentrations fell markedly by the end of the second season, and treatment effects were much less consistent. It is suggested that pigment analysis therefore probably has little diagnostic value for assessing damage from pollutant nitrogen effects.  相似文献   
6.
Soil and atmospheric concentrations, dry deposition and soil-air gas exchange of organochlorine pesticides (OCPs) were investigated at an industrial site in Aliaga, Izmir, Turkey. Current-use pesticides, endosulfan and chlorpyrifos, had the highest atmospheric levels in summer and winter. Summertime total (gas + particle) OCP concentrations in air were higher, probably due to increased volatilization at higher temperatures and seasonal local/regional applications of current-use pesticides. Particle deposition fluxes were generally higher in summer than in winter. Overall average dry particle deposition velocity for all the OCPs was 4.9 ± 4.1 cm s−1 (average ± SD). ΣDDXs (sum of p,p′-DDT, p,p′-DDD, and p,p′-DDE) were the most abundant OCPs in Aliaga soils (= 48), probably due to their heavy historical use and persistence. Calculated fugacity ratios and average net gas fluxes across the soil-air interface indicated volatilization for α-CHL, γ-CHL, heptachlorepoxide, cis-nonachlor, trans-nonachlor, and p,p′-DDT in summer, and for α-CHL, γ-CHL, trans-nonachlor, endosulfan sulfate, and p,p′-DDT in winter. For the remaining OCPs, soil acted as a sink during both seasons. Comparison of the determined fluxes showed that dry particle, gas-phase, and wet deposition are significant OCP input mechanisms to the soil in the study area.  相似文献   
7.
The dynamic soil chemistry model SMART was applied to 121 intensive forest monitoring plots (mainly located in western and northern Europe) for which both element input (deposition) and element concentrations in the soil solution were available. After calibration of poorly known parameters, the model accurately simulated soil solution concentrations for most plots as indicated by goodness-of-fit measures, although some of the intra-annual variation especially in nitrate and aluminium concentrations could not be reproduced. Model evaluations of two emission-deposition scenarios (current legislation and maximum feasible reductions) for the period 1970-2030 show a strong reduction in sulphate concentrations between 1980 and 2000 in the soil due to the high reductions in sulphur emissions. However, current legislation hardly reduces future nitrogen concentrations, whereas maximum feasible reductions reduces them by more than half. Maximum feasible reductions are also more effective in increasing pH and reducing aluminium concentrations, mostly below ‘critical’ values.  相似文献   
8.
Numerical sensitivity tests and four months of complete model runs have been conducted for the Routine Deposition Model (RDM). The influence of individual model inputs on dry deposition velocity as a function of land-use category (LUC) and pollutant (SO2, O3, SO2−4 and HNO3) were examined over a realistic range of values for solar radiation, stability and wind speed. Spatial and temporal variations in RDM deposition velocity (Vd) during June – September 1996 time period generated using meteorological input from a mesoscale model run at 35 km resolution over north-eastern North America were also examined. Comparison of RDM Vd values to a variety of measurements of dry deposition velocities of SO2, O3, SO2−4 and NHO3 that have been reported in the literature demonstrated that RDM produces realistic results. Over northeastern NA RDM monthly averaged dry deposition velocities for SO2 vary from 0.2 to 3.0 cm s−1 with the highest deposition velocities over water surfaces. For O3, the monthly averaged dry deposition velocities are from 0.05 to 1.0 cm s−1 with the lowest values over water surfaces and the highest over forested areas. For HNO3, the monthly averaged dry deposition velocities have the range of 0.5 to 6 cm s−1, with the highest values for forested areas. For SO2−4, they range from 0.05–1.5 cm s−1, with the lowest values over water and the highest over forest. The monthly averaged dry deposition velocities for SO2 and O3 are higher in the growing season compared to the fall, but this behaviour is not apparent for HNO3 and sulphate. In the daytime, the hourly averaged dry deposition velocities for SO2, O3, SO2−4 and HNO3 are higher than that in the nighttime over most of the vegetated area. The diurnal variation is most evident for surfaces with large values for leaf area index (LAI), such as forests. Based on the results presented in this paper, it is concluded that RDM Vd values can be combined with measured air concentrations over hourly, daily or weekly periods to determine dry deposition amounts and with wet deposition measurements to provide seasonal estimates of total deposition and estimates of the relative importance of dry deposition.  相似文献   
9.
Eucalyptus forest; and in the composition of understorey herbs, sedges, and grasslands. Pollen concentration and charcoal and organic content also exhibit post-European changes. Thus, pollen analysis provides a technique for determining changes in sediment budgets and identifying major vegetation changes in floodplains.  相似文献   
10.
In Finland the deposition of strontium-89 (90Sr) and strontium-90 (90Sr) has been monitored since the early 1960s. The measured cumulative 90Sr deposition in 1963-2005 is on average 1200 Bq m−2, of which 150 Bq m−2 originates from the Chernobyl accident. Adding to this the deposition in 1945-1962 produces a value of 2040 Bq m−2 for the cumulative deposition in Finland. The nuclear explosion-derived deposition up to 1985 obtained in this study, 1850 Bq m−2, is in good agreement with the zonal 90Sr deposition of 1740 Bq m−2 in the 60°N-70°N latitude band estimated by UNSCEAR. The regional deposition patterns of 89Sr and 90Sr following the Chernobyl accident resemble those of the refractory nuclides such as 239,240Pu and 95Zr. The total deposition of Chernobyl-derived 90Sr in Finland was about 5.3 × 1013 Bq. This activity corresponds to 0.027% of the reactor core inventory and 0.66% of the atmospheric emissions from the accident. The corresponding figures for 89Sr are 4.5 × 1014 Bq, 0.023% and 0.56%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号