首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
  国内免费   17篇
安全科学   1篇
废物处理   1篇
环保管理   3篇
综合类   31篇
基础理论   6篇
污染及防治   7篇
评价与监测   5篇
社会与环境   2篇
  2022年   2篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
排序方式: 共有56条查询结果,搜索用时 46 毫秒
1.
李洁  蒋丽娟  王晓琳  肖琳 《环境科学》2017,38(10):4253-4261
凤眼莲近年来广泛应用于富营养化淡水湖泊的生态修复中,但其对微生物的相互作用和对水体中氮素的去除鲜有报道.本研究在氮素去除过程中对比凤眼莲和细菌的相对重要性,并且检测浮游植物对硝化细菌和反硝化细菌相对丰度及多样性的影响.水体中氮素的去除率以及硝化和反硝化作用的潜在能力使用定量聚合酶链式反应(qPCRs)对硝化作用基因amoA和反硝化作用基因nirS/K进行检测,从微观角度研究富营养化水体中是否会受到凤眼莲存在的影响.结果表明,TN的减少在70d的实验周期中所有处理组表现较为一致,但凤眼莲存在的实验组在24h内TN和NH_4~+-N的去除上有显著的降低,并且amoA的丰度有所增加,nirS/K的丰度有所降低.T-RFLP结果表明亚硝化单胞菌在氨氧化微生物中占优势.凤眼莲的种植可以实现富营养化水体中NH_4~+-N的快速有效减少,且微生物的相互作用可以充分利用到淡水生态系统的修复中.  相似文献   
2.
The aim of the current study was to investigate the potential of an aquatic plant, the water hyacinth (Eichhornia crassipes) devoid rhizospheric bacteria, to reduce naphthalene (a polyaromatic hydrocarbon) present in wastewater and wetlands.The capability of sterile water hyacinth plants to remove naphthalene from water and wastewater was studied in batch systems. Water hyacinths enhance the removal of pollutants through their consumption as nutrients and also through microbial activity of their rhizospheric bacteria.Experimental kinetics of naphthalene removal by water hyacinth coupled with natural rhizospheric bacteria was 100% after 9 d. Plants, decoupled of rhizospheric bacteria, reduced naphthalene concentration up to 45% during 7 d. Additionally, naphthalene uptake by water hyacinth revealed a biphasic behavior: a rapid first phase completed after 2.5 h, and a second, considerably slower rate, phase (2.5-225 h). In conclusion, water hyacinth devoid rhizospheric bacteria reduced significantly naphthalene concentration in water, revealing a considerable plant contribution in the biodegradation process of this pollutant.  相似文献   
3.
苏州市的CO2排放量在逐年上升,CO2减排工作任务艰巨。开发无污染的新能源替代化石燃料是CO2减排的一种思路。苏州作为一个江南水乡城市,水资源丰富,水生植物生长旺盛。主要探讨了水生植物(包括藻类和水葫芦)生物能在苏州市CO2减排中的作用。通过粗略估算,藻类和水葫芦产生的年生物能(折算为标准煤)1 200.35万t,大约占苏州年总能耗的四分之一,即可以减少大约四分之一的CO2排放。因此,水生植物生物能在苏州市CO2减排中具有重要的作用。  相似文献   
4.
凤眼莲在净化废水方面的应用   总被引:3,自引:0,他引:3  
本文初步探讨了凤眼莲在净化废水方面的应用效果。结果表明,凤眼莲对生活废水具有较强的适应能力和净化效果。同时,其经特殊的处理后钻井废水中也能较正常生长、繁殖,并起一定的净化作用。文中就废水pH对凤眼莲的影响作了初步实验探讨,对凤眼莲净化废水机理也作了简述。  相似文献   
5.
凤眼莲根系分泌物对栅藻结构及代谢的影响   总被引:25,自引:2,他引:25  
研究了凤眼莲(Eichhornia crassipes)根系分泌物对栅藻(Scenedesmus arcuatus Lemm)超微结构及生长代谢的影响,结果显示,凤眼莲对栅藻有明显的克生作用,藻的数量逐步减少,栅藻生长受影响后,细胞中绿体片层肿用甚至解体,线粒体嵴消失,质膜、核膜受破坏,光合放氧化速度明显下降,可溶性蛋白折含量四天后4线下降,超氧阴离子(O2-)、丙二醛(MDA)的含量上升,知值都  相似文献   
6.
凤眼莲根系丙酮提取物抑制赤潮藻类生长的机制研究   总被引:18,自引:1,他引:18  
为了探讨凤眼莲根系丙酮提取物抑制塔玛亚历山大藻(Alexandrium tamarense)生长的机制,筛选和发现新的、高效、低毒或无毒、能迅速控制赤潮生物生长的除藻剂.对比分析了凤眼莲根系丙酮提取物中不同物质的抑藻效果,探讨了凤眼莲根系丙酮提取物抑藻的主要化学基础.通过考查主要抑藻物质对藻细胞可溶性蛋白质、丙二醛含量和超氧化物歧化酶(SOD)活力的影响,探讨其抑藻机理.结果表明,浓度高于5 mg·L-1以上的N-苯基-2-萘胺,3 d后能保持对塔玛亚历山大藻抑制率超过50%;浓度为70μL·L-1的亚油酸对塔玛亚历山大藻的抑制率约为40%;浓度为70 μL·L-1的壬酸第3天可以达到85%的抑藻率,但随后藻密度有反弹.实验浓度范围内的亚油酸甘油酯和丙酰胺对塔玛亚历山大藻的抑制作用不明显.培养液中加入一定量N-苯基-2-萘胺后,藻体中的可溶性蛋白质和丙二醛含量有应激性升高,超氧化物歧化酶活力呈下降趋势.研究结果表明,N-苯基-2-萘胺可能是凤眼莲根系丙酮提取物中的主要抑藻物质;其可能通过自由基反应破坏藻细胞的结构,从而达到抑藻效果.  相似文献   
7.
Indraprastha Power Station (IPP Stn) and Rajghat Power House (RPH), owned by Delhi Electric Supply Undertaking, are both coal-fired power stations located on Ring Road in New Delhi. Ash content of the coal used ranges between 38–47%. The ash is collected in electrostatic precipitators which have an efficiency of 99.3% (IPP station), and 99.7% (RPH). There are instances of major dust pollution around the power stations from fly ash dispersal. The main method of disposal of fly ash from the power stations is by mixing with water, the resultant slurry is pumped through pipes to ash disposal ponds. The supernatant from these ponds is discharged into River Yamuna. Field studies have revealed large quantities of fly ash being deposited into the river. Local populations of Eichhornia crassipes have reduced dramatically between 1987–1995, with a marked reduction in the year 1994–1995. Field studies, conducted in January, 1995 have investigated the impact of fly ash dispersal in the Delhi region with particular reference to metal contamination. Elemental concentrations for a range of elements are determined by ICP-AES in fly ash and top soils along four transects from the power stations up to a distance of 8 km. The effects of fly ash leachates from the ash settling ponds on the river are determined by analyzing river overbank soils and vegetation for their elemental contents. It is concluded that fly ash dispersal from the stacks are a source of alkali, alkaline-earth and to some extent heavy metals in soils in the vicinity of the power stations, and enrichment of elements in river overbank soils are a result of discharge of fly ash leachates from ash disposal ponds. However, the impact from both these sources of metal contamination is not large enough to give cause for concern. Marked reduction in populations of Eichhornia crassipes downstream of the river where it receives leachates from the ash disposal ponds are attributed to turbidity of the ash pond leachates and metal toxicity. Elemental enrichment in the floodplain soils, as a result of fly ash particle deposition during monsoons, may enhance the horticultural value of these soils as is shown by a healthy cultivated crop of Brassica juncea.  相似文献   
8.
Various aquatic plant species are known to accumulate heavy metals through the process of bioaccumulation. World’s most troublesome aquatic weed water hyacinth (Eichhornia crassipes) has been studied for its tendency to bio-accumulate and bio-magnify the heavy metal contaminants present in water bodies. The chemical investigation of plant parts has shown that it accumulates heavy metals like lead (Pb), chromium (Cr), zinc (Zn), manganese (Mn) and copper (Cu) to a large extent. Of all the heavy metals studied Pb, Zn and Mn tend to show greater affinity towards bioaccumulation. The higher concentration of metal in the aquatic weed signifies the biomagnification that lead to filtration of metallic ions from polluted water. The concept that E. crassipes can be used as a natural aquatic treatment system in the uptake of heavy metals is explored.  相似文献   
9.
Nowadays, intensive breeding of poultry and livestock of large scale has made the treatment of its waste and wastewater an urgent environmental issue, which motivated this study. A wetland of 688 m2 was constructed on an egg duck farm, and water hyacinth (Eichhornia crassipes) was chosen as an aquatic plant for the wetland and used as food for duck production. The objectives of this study were to test the role of water hyacinth in purifying nutrient-rich wastewater and its effects on the ducks’ feed intake, egg laying performance and egg quality. This paper shows that the constructed wetland removed as much as 64.44% of chemical oxygen demand (COD), 21.78% of total nitrogen (TN) and 23.02% of total phosphorus (TP). Both dissolved oxygen (DO) and the transparency of the wastewater were remarkably improved, with its transparency 2.5 times higher than that of the untreated wastewater. After the ducks were fed with water hyacinth, the average daily feed intake and the egg-laying ratio in the test group were 5.86% and 9.79% higher, respectively, than in the control group; the di erences were both significant at the 0.01 probability level. The egg weight in the test group was 2.36% higher than in the control group (P < 0.05), but the feed conversion ratios were almost the same. The eggshell thickness and strength were among the egg qualities significantly increased in ducks fed with water hyacinth.We concluded that a water hyacinth system was e ective for purifying wastewater from an intensive duck farm during the water hyacinth growing season, as harvested water hyacinth had an excellent performance as duck feed. We also discussed the limitations of the experiment.  相似文献   
10.
Neochetina eichhorniae and N. bruchi. We therefore sampled water hyacinth and weevil populations at 54 sites distributed statewide. Half were under maintenance control, half were not treated with herbicides. General site conditions were assessed, demographic data were collected on weevil and plant populations, the reproductive condition of the weevils was determined, and plant nutrient and proximate composition of water hyacinth leaves were analyzed. Water hyacinth infestations under maintenance control were minimal when compared to unmanaged sites. Likewise, on a population basis, all weevil cohorts were much lower due to the paucity of plants. Plants at unmanaged sites, where weevil intensities were much higher, suffered high levels of stress and showed low growth potential. Lower percentages of the female weevils were reproductive at unmanaged sites when compared to managed sites, so densities of reproductives and immatures were similar at both site types. Reproductive status of the weevils improved with increased plant quality. Plant quality, in turn, declined as stresses arising from weevil feeding increased. Plant quality was positively correlated with plant growth potential and flower production. Thus, maintenance control improved plant nutritive quality thereby inducing reproductive vigor of the weevils, but ensuring plant regrowth and the need for future control. This suggests that biological and herbicidal controls should be integrated, using herbicides to maintain water hyacinth infestations below management thresholds but in a manner that conserves biological control agent populations. This approach would lead to improved plant nutritional quality that would, in turn, stimulate reproduction in biological control agent populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号