首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
安全科学   1篇
废物处理   1篇
综合类   3篇
基础理论   4篇
污染及防治   9篇
  2022年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   7篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2006年   2篇
  1992年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Use of enzymes in textile processes has many advantages as far as the environmentally friendly processes are concerned. These advantages include water and energy savings, less chemical use, less fabric damage, mild and environmentally friendly process conditions. In this work, C.I. Reactive Yellow 15, C.I. Reactive Red 21 and C.I. Reactive Blue 19 were used to dye untreated woven cotton fabric in a laboratory scale dyeing machine, on a pilot scale jig and on a pilot scale winch by using a single bath combined process, in which various enzymes, namely, amylase, pectinase, and catalase were employed. This new process was named as the “Rapid Enzymatic Single-bath Treatment” (REST), since it was completed almost in half of the conventional dyeing time, and all of the stages, namely, desizing, scouring, bleaching and dyeing were carried out in a single bath without replacing the process water with fresh water until the end of the dyeing. In the REST process, the untreated, starch-sized fabric was first desized by amylase enzyme, and this was followed by a pectinase treatment in the same bath. The fabric was then bleached by H2O2 in the same bath, and after the hydrogen peroxide bleaching; the catalase enzyme was added to the bath to remove H2O2 residues before reactive dyeing. Without carrying out intermediate washings/rinsings between these processes, the reactive dyeing was carried out in a conventional way in the same bath, and finally, the fabric was taken from the bath and washed out. The colour yield was compared with the dyeings which were carried out conventionally in separate baths. Finally, the REST has many benefits in terms of water saving, reduced process time and energy consumptions compared to the conventional preparatory and dyeing process of cotton fabrics.  相似文献   
2.
Polycyclic aromatic hydrocarbons (PAHs) are a large group of chemicals. They represent an important concern due to their widespread distribution in the environment, their resistance to biodegradation, their potential to bioaccumulate and their harmful effects. Several pilot treatments have been implemented to prevent economic consequences and deterioration of soil and water quality. As a promising option, fungal enzymes are regarded as a powerful choice for degradation of PAHs. Phanerochaete chrysosporium, Pleurotus ostreatus and Bjerkandera adusta are most commonly used for the degradation of such compounds due to their production of ligninolytic enzymes such as lignin peroxidase, manganese peroxidase and laccase. The rate of biodegradation depends on many culture conditions, such as temperature, oxygen, accessibility of nutrients and agitated or shallow culture. Moreover, the addition of biosurfactants can strongly modify the enzyme activity. The removal of PAHs is dependent on the ionization potential. The study of the kinetics is not completely comprehended, and it becomes morem hallenging when fungi are applied for bioremediation. Degradation studies in soil are much more complicated than liquid cultures because of the heterogeneity of soil, thus, many factors should be considered when studying soil bioremediation, such as desorption and bioavailability of PAHs. Different degradation pathways can be suggested. The peroxidases are heme-containing enzymes having common catalytic cycles. One molecule of hydrogen peroxide oxidizes the resting enzyme withdrawing two electrons. Subsequently, the peroxidase is reduced back in two steps of one electron oxidation. Laccases are copper-containing oxidases. They reduce molecular oxygen to water and oxidize phenolic compounds.  相似文献   
3.
Abstract

The objective of this study was to determine the effect of either 2.5 mg/kg Body Weight or 5 mg/kg Body Weight (BW) doses of isoflavones on semen quality, testosterone levels, lipid peroxidation and semen biochemistry of male New Zealand White rabbits. Animals were given both 2.5 mg/kg BW and 5 mg/kg BW doses of isoflavones. The tested doses were given to rabbits orally every other day for 13 weeks. Treatment with isoflavones caused an increase (p < 0.05) in libido (by decreasing the reaction time), sperm concentration, sperm motility (%), total motile sperm per ejaculate (TMS), packed sperm volume (PSV), total functional sperm fraction (TFSF), total sperm output, initial fructose concentration and normal sperm, while dead sperm was reduced compared to control animals. On the other hand, ejaculate volume, initial hydrogen ion concentration (pH) and plasma testosterone levels did not change in treated animals with both doses of isoflavones as compared to control. Concentrations of thiobarbituric acid-reactive substances (TBARS), total lipids, and low density lipoprotein were significantly (p < 0.05) reduced in seminal plasma of rabbits treated with either 2.5 mg/kg BW or 5 mg/kg BW doses of isoflavones. While, the activities of glutathione S-transferase (GST), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), acid phosphatase (AcP), and alkaline phosphatase (AlP) were significantly (p < 0.05) increased in seminal plasma of treated animals. Also, total cholesterol, percentage cholesterol (out of total lipids), and high density lipoprotein were significantly (p < 0.05) increased, while triglyceride did not change in seminal plasma of treated animals. Supplementation at either level of isoflavones did not cause changes in live body weight (LBW), dry matter intake (DMI), and relative weights of testes and epididymis. The present results showed that either 2.5 mg/kg BW or 5 mg/kg BW doses of isoflavones caused an improvement of some semen characteristics and did not have negative effects on male fertility.  相似文献   
4.
Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co-combustion in existing power plants and utilization of the liquid fraction for biogas production were concluded to be the most favourable options with respect to their environmental impacts (particularly global warming) and energy performance. The optimization of the energy and environmental performance of the waste refinery was mainly associated with the opportunity to decrease energy and enzyme consumption.  相似文献   
5.
6.
Abstract

The effect of a chronic exposure to sublethal concentration of mercuric chloride (0.3 mg/1) on the activities of some enzymes in the digestive system of the teleost fish Channa punctatus was examined after 15 and 30 days of treatment. Glucose‐6‐phosphatase was significantly inhibited in the intestine and pyloric caeca. No marked alterations were observed in the activities of maltase and lactase except for elevation in maltase activity and inhibition in lactase activity in the intestine and pyloric caeca after 15 days of treatment. Three peptidases (aminotripeptidase, glycylglycine dipeptidase and glycyl‐1‐leucine dipeptidase) showed decreased activities in all parts of the digestive system. A decrease was also observed in the activity of lipase except for the stomach where inhibition after 15 days was insignificant. The results indicate that the activities of all the enzymes examined are inhibited in intestine and pyloric caeca and digestion of proteins and lipids may be more affected by mercury than the digestion of some carbohydrates.  相似文献   
7.
Nitrate analysis in water is one of the most frequently applied methods in environmental chemistry. Current methods for nitrate are generally based on toxic substances. Here, we show that a viable alternative method is to use the enzyme nitrate reductase. The key to applying this Green Chemistry solution for nitrate analysis is plentiful, inexpensive, analytical grade enzyme. We demonstrate that recombinant Arabidopsis nitrate reductase, expressed in the methylotrophic yeast Pichia pastoris, is a highly effective catalyst for nitrate analysis at 37°C. Recombinant production of enzyme ensures consistent quality and provides means to meet the needs of environmental chemistry.  相似文献   
8.
For a precise evaluation of environmental and eco-toxicology effect of nitrification inhibitor on agroecosystem, the phytotoxicity of nitrification inhibitor should be fully understand. This paper aimed to study the phytotoxicity of thiourea and urea application on soybean seedlings. Effects of thiourea on the biomass, content of metal ions and chlorophyll level were studied in the leaves of soybean, and the effects of thiourea on anti-oxidative system (SOD, POD, and CAT) and content of MDA in the leaves of soybean were also investigated. The results showed that thiourea had great impact on the growth of soybean. Low concentration (1.0 mmol kg-1) of thiourea could slightly inhibit the growth of seedlings, and increase the activities of SOD, POD, CAT. Thiourea treatment of different concentrations had no effect on the content of Cu and Zn ion in soybean seedlings, but could obviously change the content of Mn and Fe ions in soybean seedlings. The content of Mn ion increased with the concentration of thiourea, from 18.58 mg kg-1 in the control to 45.45 mg kg-1 with 5 mmol kg-1 thiourea treatment. On the other hand, the content of Fe ion decreased with the concentration of thiourea, from 20.77 mg kg-1 in the control to 17.63 with 5 mmol kg-1 thiourea treatment. Heave inhibition effects and phytotoxic symptom were found in thriourea treatment of 5.0 mmol kg-1. The growth of seedlings was obviously inhibited; the content of chlorophyll in leaves of soybean decreased to 2.11 mg kg-1 compared to 3.56 mg kg-1 in that of the control. Simultaneously, the activities of SOD, POD, CAT and the content of MDA increased dramatically when thiourea reached 5.0 mmol kg-1. The heave inhibition effects and phytotoxic symptom in the soybean seedling indicated that thiourea could induce environmental stress in the seedlings.  相似文献   
9.
This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl – 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn2+ kg?1 in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn2+ kg?1.  相似文献   
10.
Various studies have been conducted to develop technologies that minimize the environmental concerns associated with the leather industry. The use of enzymes and oxidizing products during the unhairing step reduces pollution by tanneries as well as process time. In this study, were used an enzymatic extract produced by a strain of Bacillus subtilis – BLBc 11 – and hydrogen peroxide to conduct enzymatic-oxidative unhairing as an alternative to the conventional process (lime and sodium sulfide). Tests for enzymatic-oxidative unhairing were performed by applying crude enzymatic extract at concentrations of 100 U g−1 and 300 U g−1 of hide and hydrogen peroxide at concentrations of 4% and 8%. Tests were conducted comparing the proposed unhairing method, the conventional unhairing and purely enzymatic unhairing, performed with crud enzymatic extract produced by strain BLBc 11. The results showed that the proposed enzymatic-oxidative unhairing method can be used as an alternative to lime and sodium sulfide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号