首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
  国内免费   2篇
安全科学   3篇
废物处理   2篇
环保管理   7篇
综合类   7篇
基础理论   3篇
污染及防治   4篇
评价与监测   5篇
  2022年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2005年   2篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
Liquid hot water (LHW), an environmental-friendly physico-chemical treatment, was applied to pretreat the sugarcane bagasse (SCB). Tween80, a non-ionic surfactant, was used to enhance the enzymatic hydrolysis of the pretreated SCB. It found that 0.125 mL Tween80 /g dry matter could make the maximum increase (33.2%) of the glycan conversion of the LHW-pretreated SCB. A self-designed laboratory facility with a plate-and-frame impeller was applied to conduct batch hydrolysis, fed-batch hydrolysis, and the process of high-temperature (50°C) fed-batch hydrolysis following low-temperature (30°C) simultaneous saccharification and fermentation (SSF) which was adopted to overcome the incompatible optimum temperature of saccharification and fermentation in the SSF process. After hydrolyzing LHW-pretreated SCB for 120 h with commercial cellulase, the total sugar concentration and glycan conversion obtained from fed-batch hydrolysis were 91.6 g/L and 68.3%, respectively, which were 9.7 g/L and 7.3% higher than those obtained from batch hydrolysis. With Saccharomyces cerevisiae Y2034 fermenting under the non-sterile condition, the ethanol production and theoretical yield obtained from the process of SSF after fed-batch hydrolysis were 55.4 g/L and 88.3% for 72h, respectively, which were 15.5 g/L and 24.7% higher than those from separate fed-batch hydrolysis and fermentation. The result of this work was superior to the reported results obtained from the LHW-pretreated SCB.  相似文献   
2.
Organic matters (OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol (EtOH)-mediated As(III) adsorption onto Zn-loaded pinecone (PC) biochar through batch experiments conducted under Box–Behnken design. The effect of EtOH on As(III) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtOH and pH on As(III) adsorption, whereas neural network revealed the stronger influence of EtOH (64.5%) followed by pH (20.75%) and As(III) concentration (14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that EtOH enhances As(III) adsorption over a pH range of 2 to 7, possibly due to facilitation of ligand–metal(Zn) binding complexation mechanism. Eventually, hybrid response surface model–genetic algorithm (RSM–GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(III) (10.47 μg/g) is facilitated at 30.22 mg C/L of EtOH with initial As(III) concentration of 196.77 μg/L at pH 5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(III) species in the presence of OM.  相似文献   
3.
How consumers might switch from gasoline and diesel to alternative energy sources is not known, since the availability of alternatives is currently very limited. To bridge this gap, we exploit exogenous variation in ethanol prices at Brazil's pumps and uncover substantial consumer heterogeneity in the choice between long-established gasoline and an alternative that is similarly available and usable: sugarcane ethanol. We observe roughly 20% of flexible-fuel motorists choosing gasoline when gasoline is priced 20% above ethanol in energy-adjusted terms ($/mile) and, similarly, 20% of motorists choosing ethanol when ethanol is priced 20% above gasoline. We use transaction-level data to explore “non-price” characteristics which differentiate the two goods in the minds of different groups of consumers. Our findings suggest—and a counterfactual illustrates—that switching away from gasoline en masse, should this be desired, would require considerable price discounts to boost voluntary adoption, in the US and elsewhere.  相似文献   
4.
This study presents the experimental results obtained during long-term operation of two biofilters treating two alcohols: methanol and ethanol. The biofilters used for this purpose were previously packed with a compost material made from tobacco processing residues. The alcohols concentrations tested lay between 0.40 and 3.20 g/m3 for methanol, and 0.55 and 5.05 g/m3 for ethanol. The empty bed residence time in each biofilter was 60 s. Biofilter inlet loads of less than 190 and 300 g/m3/h for the methanol and ethanol additions respectively, were thereafter evaluated. In addition, the concentrations of nutrient nitrogen were also varied, from 0.1 to 2.0 g-N/l and from 0.3 to 11.3 g-N/l for the ethanol and the methanol, respectively. The results thus obtained have made it possible to select the optimal nitrogen concentrations which, for the cases examined, turn out to be 0.3 g-N/l and between 2 and 3.8 g-N/l for the ethanol and methanol substrates, respectively. The maximum elimination capacities obtained in this study were 82 and 150 g/m3/h, respectively for the methanol and ethanol cases. It was therefore concluded that, for a readily biodegradable compound such as ethanol, the nitrogen requirement is substantially lower than that needed for the methanol degradation, the latter appearing to be more difficult to degrade biologically under similar operating conditions. The production rate of the co-product carbon dioxide during methanol and ethanol biofiltration was also investigated. Also, a good correlation was found to exist between the temperature and the conversion achieved in the biofilter.  相似文献   
5.
Biomass energy and carbon capture and storage (BECCS) can lead to a net removal of atmospheric CO2. This paper investigates environmental and economic performances of CCS retrofit applied to two mid-sized refineries producing ethanol from sugar beets. Located in the Region Centre France, each refinery has two major CO2 sources: fermentation and cogeneration units. “carbon and energy footprint” (CEF) and “discounted cash flow” (DCF) analyses show that such a project could be a good opportunity for CCS early deployment. CCS retrofit on fermentation only with natural gas fired cogeneration improves CEF of ethanol production and consumption by 60% without increasing much the non renewable energy consumption. CCS retrofit on fermentation and natural gas fired cogeneration is even more appealing by decreasing of 115% CO2 emissions, while increasing non renewable energy consumption by 40%. DCF shows that significant project rates of return can be achieved for such small sources if both a stringent carbon policy and direct subsidies corresponding to 25% of necessary investment are assumed. We also underlined that transport and storage cost dilution can be realistically achieved by clustering emissions from various plants located in the same area. On a single plant basis, increasing ethanol production can also produce strong economies of scale.  相似文献   
6.
The objectives of this research were to quantify the extent of cosolvency for water–gasoline mixtures containing ethanol and to identify appropriate modeling tools for predicting the equilibrium partitioning of BTEX compounds and ethanol between an ethanol-bearing gasoline and water. Batch-equilibrium experiments were performed to measure ethanol and BTEX partitioning between a gasoline and aqueous phase. The experiments incorporated simple binary and multicomponent organic mixtures comprised of as many as eight compounds as well as highly complex commercial gasolines where the composition of the organic phase was not completely defined. At high ethanol volume fractions, the measured partition coefficients displayed an approximate linear relationship when plotted on semi-log scale as a function of ethanol volume fraction. At lower concentrations, however, there was a distinctly different trend which is attributed to a change in solubilization mechanisms at these concentrations. Three mathematical models were compared with or fit to the experimental results. Log-linear and UNIFAC-based models were used in a predictive capacity and were capable of representing the overall increase in partition coefficients as a function of increasing ethanol content in the aqueous phase. However, neither of these predicted the observed two-part curve. A piecewise model comprised of a linear relationship for low ethanol volume fractions and a log-linear model for higher concentrations was fit to data for a surrogate gasoline comprised of eight compounds and was then used to predict BTEX concentrations in the aqueous phase equilibrated with three different commercial gasolines. This model was superior to the UNIFAC predictions, especially at the low aqueous ethanol concentrations.  相似文献   
7.
以锦州化工二厂生产的2#环烷酸为原料,采用减压蒸馏──初馏分皂化萃取脱油工艺,可制得中性油含量分别低于10%和5%的一级品环烷酸.该工艺具有流程简单、物料消耗少、产品收率高等优点.通过实验,初步探讨了蒸馏真空度、氢氧化钠浓度及用量、乙醇用量、萃取剂用量等工艺条件对脱油效果及产品质量的影响。  相似文献   
8.
As a means to remediate soil contaminated by polycyclic aromatic hydrocarbons, we investigated a combined process involving ethanol washing followed by a Fenton oxidation reaction. Artificial loamy soil was contaminated with various representative polycyclic aromatic hydrocarbons (i.e., fluorene, anthracene, pyrene, benzo(b)fluoranthene, or benzo(a)pyrene) at concentrations ten times higher than regulatory soil standards of The Netherlands or Canada, and then washed four times in ethanol, which reduced the concentration of polycyclic aromatic hydrocarbon contamination to below the regulatory standard. Fenton oxidation of ethanol solutions containing anthracene, benzo(a)pyrene, pyrene, acenaphthylene, acenaphthene, benz(a)anthracene, benzo(j)fluoranthene, or indeno(1,2,3-cd)pyrene showed a removal efficiency of 73.3%–99.0%; by contrast, solutions containing naphthalene, fluorene, fluoranthene, phenanthrene, or benzo(b)fluoranthene showed a removal efficiency of 9.6%–27.6%. Since each of the nonremediated polycyclic aromatic hydrocarbons, excluding benzo(b)fluoranthene, are easily biodegradable, these results indicate that the proposed treatment can be successfully applied to polycyclic aromatic hydrocarbon-contaminated soil that does not contain high concentrations of benzo(b)fluoranthene. The main reaction products resulting from Fenton oxidation of ethanol solutions containing anthracene or benz(a)anthracene were anthraquinon or benz(a)anthracene-7,12-dione, respectively; while 1,8-naphthalic anhydride was produced by solutions of acenaphthylene and acenaphthene, and 9-fluorenone by a fluorene solution. Received: June 9, 1998 / Accepted: March 24, 1999  相似文献   
9.
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.  相似文献   
10.
冉难  蒋勇  邱榕  任星宇 《火灾科学》2015,24(3):119-128
通过对不同混合比率的乙醇/氢气/空气燃烧特性进行数值模拟,研究氢气添加量对点火延迟时间、层流燃烧速度、火焰厚度、化学反应滞留时间及组分分布情况的影响。研究发现一定程度上氢气添加量的增加能够缩短混合气体的点火延迟时间,并且氢气对点火延迟时间的影响随着温度的升高而逐渐减小。随着混合比率的增大,层流燃烧速度增大,并且在混合比率大于0.4时显著增大。火焰厚度及化学反应滞留时间随氢气增加而逐渐减小。此外,进一步分析组分分布情况得知氢气添加使火焰中H*、O*、OH*自由基摩尔分数峰值增大,并且H+O+OH摩尔分数峰值与层流燃烧速度存在线性关系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号