首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   3篇
  国内免费   7篇
环保管理   1篇
综合类   18篇
评价与监测   1篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
排序方式: 共有20条查询结果,搜索用时 21 毫秒
1.
邯郸市物质流分析   总被引:6,自引:1,他引:5  
楼俞  石磊 《环境科学研究》2008,21(4):201-204
利用邯郸市统计年鉴数据和实地调研资料,采用城市物质流分析框架研究邯郸市2005年物质流全景和1993─2005年物质输入和输出结构的时间序列变化.结果表明:13年间邯郸市地区生产总值增长3.4倍,物质输入增长1.1倍,物质生产力增长1.1倍,由1993年的151.8元/t上升至2005年的320.9元/t,反映了邯郸市前期经济发展与资源投入具有明显的“脱钩"现象;另一方面,邯郸市仍然遵循着“高投入、高排放"的发展模式,2005年物质净存量仅占全年物质通量的12.2%,大部分物质在开采当年并不进入经济系统而直接排放到生态系统中;同时,邯郸市经济发展的对外依存度逐年升高,从该市外调入的物质量所占比例由1993年的10.2%上升至2005年的39.2%,表明邯郸市经济发展将面临更大的资源   相似文献   
2.
对邯郸市区内邯郸钢铁集团(邯钢)、邯郸市环境监测中心(环保局)、河北工程大学(矿院)3个点位4个季节代表月大气PM2.5样品进行采集,并对其离子、元素、碳质组分进行测试分析;利用基于排放清单、受体模型与空气质量模型相结合的综合来源解析方法,对邯郸市区大气PM2.5贡献来源进行分析.结果表明:邯郸市区PM2.5年均浓度为85.5μg/m3,秋冬季浓度明显高于春夏季,邯钢点位浓度略高于矿院和环保局;PM2.5中占比较高的组分为NO3-、SO42-、POA、SOA和NH4+,分别占15.7%、14.5%、13.2%、12.2%和12.4%,具有明显的二次污染和有机污染特征,冬季二次组分和有机组分占比略高于其他季节,环保局点位一次有机气溶胶(POA)和二次有机气溶胶(SOA)占比略高于矿院和邯钢;冶金和扬尘是PM2.5最主要的贡献来源,贡献率分别为27.0%和18.7%,冶金源在春夏季的贡献比例高于秋冬季,在邯钢点位的贡献率明显高于环保局和矿院.  相似文献   
3.
邯郸市黑碳气溶胶浓度变化及影响因素分析   总被引:2,自引:0,他引:2  
根据2013年3月—2017年2月邯郸市河北工程大学站点的黑碳气溶胶、PM2.5、大气污染物的小时浓度数据及常规气象数据,对邯郸市黑碳浓度的时间变化特征及影响因素进行分析.结果表明,4年来邯郸市黑碳浓度呈逐年下降的趋势:与2013年相比,2014—2016年黑碳气溶胶浓度分别下降了5%、16%、24%;邯郸市黑碳气溶胶浓度的季节变化趋势基本一致且季节变化特征明显,冬季黑碳气溶胶浓度最高,秋季次之,春夏两季最低,其中,冬季平均浓度分别是春、夏、秋季的2.07、2.77、1.49倍;其日变化呈单峰单谷状,且4个季节的日变化趋势相同,峰值均出现在6:00—8:00,谷值均出现在14:00—15:00.黑碳与PM2.5的相关系数r为0.860,相关性显著,说明黑碳气溶胶和PM2.5的来源大部分是一致的;风速和风向对黑碳气溶胶浓度也有影响,黑碳气溶胶浓度随风速增加而降低;4个季节高频风向为南-西南方向,且该风向下黑碳气溶胶浓度均较高,冬季南-西南风向下的黑碳浓度最高;应用后向轨迹对研究时段内4段重污染期间的气流轨迹进行模拟发现,邯郸市黑碳气溶胶浓度较高的主要原因是本地源排放和近距离传输,远距离传输贡献较小.  相似文献   
4.
邯郸市按照科学发展观要求,把发展循环经济作为转变经济增长方式、建设资源节约型、环境友好型社会的重要战略举措,科学发展观已成为政府决策、企业经营必须遵循的重要原则之一.现行会计制度与科学发展观的矛盾凸显,建立企业环境会计,可推进企业增强环境保护意识,增加企业经济效益,提高企业的社会信誉,是落实科学发展观,实现人与自然的和谐,促进邯郸市经济可持续发展的一项重要内容.  相似文献   
5.
随着邯郸市经济高速增长、人口数量增多、城市化进程加快及公众环境要求的提高,经济社会高速发展与资源能源短缺的矛盾、城市化进程加快与城市基础设施建设滞后的矛盾、公众环境要求提高与环境保护能力相对薄弱的矛盾将集中爆发.环境审计作为环境管理的现代方法之一,对于节约和有效利用资源,加快邯郸市产业结构调整步伐,合理配置各种生产要素,促进经济可持续发展具有重要的作用和意义.开展环境审计是审计工作发挥监督职能作用,促进经济走向可持续发展道路的有效途径.  相似文献   
6.
我国典型钢铁工业城市夏季臭氧污染来源解析研究   总被引:2,自引:0,他引:2  
邯郸与其周边城市相比,臭氧(O3)污染最为严重.基于观测数据分析夏季邯郸O3浓度的时空特征,结果显示:观测期间邯郸O3超标天数比率为86.7%,各区县O3浓度分布存在差异,高温、低湿和偏南贴地气团传输是此次O3连续污染的主要成因.继而,以CAMx-OSAT模型模拟方法进行O3来源解析,溯源分析显示:邯郸O3污染具有明显区域性特征,本地源对市域O3贡献为43.9%,对主城区贡献明显增加(46.5%),但对O3污染最严重郊县成安却有所下降(37.4%),来自河南地区的贡献占有重要比例;O3污染过程中,本地源对主城区贡献显著升高(54.0%).本地源排放中,移动源对月均O3贡献最高,而钢铁源是O3污染过程最大贡献源.邯郸主城区光化学O3生成主要受VOCs敏感区控制;O3污染过程在NOx敏感区内生成的O3占比相对月均情况有所升高.  相似文献   
7.
现阶段城市水体的研究主要是河流的治理,而没有考虑城市水体整体的生态规划及水体生态的整体 性,根据景观规划的原则及邯郸市的现实情况,对邯郸市内的地表水体进行连接,统一管理规划,达到生态和美学统一的作用.  相似文献   
8.
对2015年3月—2016年2月邯郸市大气中的PM_(10)、PM_(2.5)和PM_(1.0)进行了在线监测,探讨了其质量浓度的变化特征,并分析了其质量浓度与风速、风向的关系。结果表明:邯郸市颗粒物质量浓度水平较高,β射线吸收法所监测的PM_(10_WET)、PM_(2.5_WET)和PM_(1.0_WET)年均浓度值分别为202.5,114.8,81.1μg/m~3,PM_(2.5_DRY)/PM_(10_WET)和PM_(2.5_WET)/PM_(10_WET)分别为0.58、0.70,PM_(1_DRY)/PM_(2.5_WET)和PM_(1_WET)/PM_(2.5_WET)分别为0.58、0.71,PM_(2.5)为PM_(10)中的主要组成,PM_(1.0)为PM_(2.5)中的主要组成。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)质量浓度冬季最高;PM_(10)、PM_(2.5)和PM_(1.0)日变化峰值为上午09:00左右,谷值为下午16:00左右,扬沙、降雨,霾和春节不同条件下PM_(10)、PM_(2.5)和PM_(1.0)差异明显。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)的浓度高值主要分布在风向0°~100°和175°~225°、风速小于1 m/s的情况下。  相似文献   
9.
邯郸市秋季大气挥发性有机物污染特征   总被引:12,自引:1,他引:11       下载免费PDF全文
大气中VOCs(volatile organic compounds,挥发性有机物)是形成O3和二次有机气溶胶的重要前体物.通过对2017年10月1-31日邯郸市秋季环境空气中56种VOCs污染物进行在线监测,结合PM2.5、O3、NOx等污染物质量浓度和气象数据,分析了邯郸市VOCs质量浓度水平、时间变化特征、化学反应活性和主要来源.结果表明:邯郸市ρ(VOCs)变化范围较大,为49.1~358.4 μg/m3,平均值为(102.2±45.8)μg/m3,VOCs的主要组分为烷烃和芳烃.ρ(VOCs)与ρ(PM2.5)、ρ(NOx)均有很强的相关性,相关系数分别为0.8和0.7;而ρ(NOx)与ρ(O3)呈明显的负相关性,相关系数为-0.7.邯郸市VOCs中各类组分化学反应活性大小依次为烯烃>芳烃>烷烃>炔烃,并且国庆期间(10月1-7日)VOCs化学反应活性小于非国庆期间(10月8-31日),烯烃和芳烃对O3的产生占主导地位.应用主因子分析法对邯郸市VOCs来源进行解析发现,溶剂使用和燃料挥发源、汽油车排放源、工业源、柴油车排放源和燃烧源是VOCs的主要来源,其方差贡献率分别为36.7%、15.5%、8.0%、6.6%、5.1%.研究显示,减少邯郸市大气中ρ(VOCs)应以控制溶剂使用和燃料挥发源、交通排放源(汽油车排放源和柴油车排放源)为主.   相似文献   
10.
为明确邯郸市PM_(2.5)中碳组分污染浓度、来源和近年来的变化,分别于2015和2017年1、4、7、10月在河北工程大学能环实验楼4层采集PM_(2.5)样品,采用热/光碳分析仪测定了样品中8种碳组分含量,并计算得到有机碳(OC)、元素碳(EC)、Char-EC和Soot-EC含量.结果表明,2017年PM_(2.5)中碳组分浓度较2015年下降约15%,质量分数下降约17%,季节变化均表现为冬高夏低的特点;2017年SOC浓度和SOC/PM_(2.5)、SOC/OC比值均低于2015年,SOC浓度和SOC/PM_(2.5)比值下降约36%,季节分布特征相似(秋冬高、春夏低).两年除夏季外,其余季节OC、EC相关系数均高于0.7,表明存在共同来源;2017年OC、OC1与EC相关性高于2015年,此外,两年中EC1~EC3、Char-EC和Soot-EC与各组分相关系数差异较大;两年中Char-EC与OC、EC的相关性(r=0.5~1.0)明显高于Soot-EC与OC、EC的相关性(r=0.1~0.6),这主要与二者形成机理有关.碳组分之间的关系和主成分分析结果表明,燃煤、生物质燃烧和柴油车尾气的混合源是2015年碳质组分的主要来源,而2017年则来源于燃煤和机动车尾气排放.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号