首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  完全免费   2篇
  评价与监测   9篇
  2019年   1篇
  2011年   2篇
  2007年   3篇
  2006年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有9条查询结果,搜索用时 62 毫秒
1
1.
固相萃取-气相色谱法测定饮用水中甲基汞   总被引:2,自引:0,他引:2       下载免费PDF全文
根据巯基棉在一定酸性条件下能定量吸附甲基汞的原理,利用多通道并联的固相萃取装置,采用气相色谱(ECD)方法测定饮用水中痕量甲基汞,考察了水样pH值对回收率的影响。方法在0.050 mg/L~1.00 mg/L范围内线性良好,当采样体积为1.0 L时,检出限为0.03 ng/L,标准样品与实际水样平行测定的相对标准偏差均〈5.0%,加标回收率均〉80%。建议采用全程序空白、溶剂空白、平行样品、加标回收率和实验室质控样等质量控制手段来保证分析数据的准确性。  相似文献
2.
水相二聚衍生化顶空- GC/MS分析水中甲基汞   总被引:1,自引:1,他引:0  
用巯基棉富集水样中甲基汞,盐酸溶液洗脱.在pH≈6条件下,甲基汞在四甲氧基硼酸钠产生的自由基作用下生成易挥发的(CH3Hg)2,用带碳捕集管的顶空浓缩,GC/MS分析.此反应为二级反应,甲基汞浓度与响应值的平方根成正比.检出限为8.5ng/L,加标回收率在61% ~75%之间.  相似文献
3.
Mercury contamination in fish is a serious public health concern that contrasts with other health benefits of eating fish. Like most US states, Illinois has monitored fish mercury contamination for decades to warn the public of mercury exposure risks by consuming fish. Has this monitoring program been effective in detecting public mercury exposure risks? I analyzed fish mercury contamination data from Illinois inland lakes (1974–1998; >?2,300 samples, 18 fish species, 149 lakes) and found that: (a) sampling and analyses have been severely limited since 1985; (b) sampling effort varied widely among lakes and species, and (c) trends and spatial patterns were confused by this variability. As a result of a severely limited and nonstrategic monitoring program, public mercury exposure risks via Illinois fish consumption remain unclear, despite much effort over many years. Illinois monitors fewer fish per angler than many US states, but is not alone in this regard. Illinois should resurrect and redesign its fish contaminant monitoring program to one that strategically and systematically assesses human mercury exposure risk. Other US states and nations may also benefit from similar retrospective examinations of monitoring programs intended to protect public health.  相似文献
4.
Throughfall and bulk precipitation samples were collected for two watersheds at Acadia National Park, Maine, from 3 May to 16 November 2000, to determine which landscape factors affected mercury (Hg) deposition. One of these watersheds, Cadillac Brook, burned in 1947, providing a natural experimental design to study the effects of forest type on deposition to forested watersheds. Sites that face southwest received the highest Hg deposition, which may be due to the interception of cross-continental movement of contaminated air masses. Sites covered with softwood vegetation also received higher Hg deposition than other vegetation types because of the higher scavenging efficiency of the canopy structure. Methyl mercury (MeHg) deposition was not affected by these factors. Hg deposition, as bulk precipitation and throughfall was lower in Cadillac Brook watershed (burned) than in Hadlock Brook watershed (unburned) because of vegetation type and watershed aspect. Hg and MeHg inputs were weighted by season and vegetation type because these two factors had the most influence on deposition. Hg volatilization was not determined. The total Hg deposition via throughfall and bulk precipitation was 9.4 μg/m2/year in Cadillac Brook watershed and 10.2 μg/m2/year in Hadlock Brook watershed. The total MeHg deposition via throughfall and bulk precipitation was 0.05 μg/m2/year in Cadillac Brook watershed and 0.10 μg/m2/year in Hadlock Brook watershed.  相似文献
5.
Precipitation and streamwater samples were collected from 16 November 1999 to 17 November 2000 in two watersheds at Acadia National Park, Maine, and analyzed for mercury (Hg) and dissolved inorganic nitrogen (DIN, nitrate plus ammonium). Cadillac Brook watershed burned in a 1947 fire that destroyed vegetation and soil organic matter. We hypothesized that Hg deposition would be higher at Hadlock Brook (the reference watershed, 10.2 μg/m2/year) than Cadillac (9.4 μg/m2/year) because of the greater scavenging efficiency of the softwood vegetation in Hadlock. We also hypothesized the Hg and DIN export from Cadillac Brook would be lower than Hadlock Brook because of elemental volatilization during the fire, along with subsequently lower rates of atmospheric deposition in a watershed with abundant bare soil and bedrock, and regenerating vegetation. Consistent with these hypotheses, Hg export was lower from Cadillac Brook watershed (0.4 μg/m2/year) than from Hadlock Brook watershed (1.3 μg/m2/year). DIN export from Cadillac Brook (11.5 eq/ha/year) was lower than Hadlock Brook (92.5 eq/ha/year). These data show that ∼50 years following a wildfire there was lower atmospheric deposition due to changes in forest species composition, lower soil pools, and greater ecosystem retention for both Hg and DIN.  相似文献
6.
建立了碱提取-丙基化衍生方式同时测定土壤中甲基汞和乙基汞的方法。优化了仪器分析条件,研究了碱提取温度、提取时间、缓冲溶液加入量和衍生化试剂加入量对测定结果的影响。应用本方法对5种实际土壤样品进行测定,甲基汞和乙基汞的方法检出限分别为0.5 μg/kg和0.3 μg/kg,相对标准偏差分别为1.3%~17%和0.94%~16%,平均回收率分别为88.2%~110%和66.1%~110%。该法适用于批量土壤样品中甲基汞和乙基汞的分析测定。  相似文献
7.
We began monitoring concentrations of both total mercury (THg) and methylmercury (MeHg) in surface water at Stormwater Treatment Area-2 (STA) on July 20, 2000. This 2602 hectare STA was constructed with three independent marshes to remove phosphorus from agricultural runoff and reduce eutrophication in the northern Everglades. However, there was concern that in doing so, STA-2 might inadvertently worsen the existing mercury problem in the Everglades. Accordingly, operating permits stipulated that flow-through operation of these treatment cells could not begin until concentrations of THg and MeHg in the interior marsh were not significantly greater than corresponding concentrations in the supply canal. Cells 2 and 3 quickly met the start-up criteria in the fall of 2000. In contrast, Cell 1 exhibited anomalously high MeHg concentrations in the fall of 2000 and 2001, and the summer of 2002. During the last such event, water-column concentrations in Cell 1 reached 32 ng THg/L and an unprecedented 20 ng MeHg/L. Tissue Hg in resident fishes reached levels as high as 430 ng/g in mosquitofish, Gambusia holbrooki, 930 ng/g in sunfish, Lepomis spp., and 2000 ng/g in largemouth bass, Micropterus salmoides. Guided by results from the monitoring program, flow rate and water depth were managed as a means to alter sulfur biogeochemistry and, thereby, reduce in situ mercury methylation. This adaptive management strategy likely played a role in the decline in water-column concentrations of THg and MeHg in Cell 1 by late 2002 and the subsequent declines in tissue Hg levels in resident fishes. Cell 1 finally met formal start-up criteria on November 26, 2002.  相似文献
8.
Concentrations of Hg and Se were determined for a total of 125Common Loon (Gavia immer) eggs collected from lakes in Alberta, Saskatchewan, Ontario, Quebec, New Brunswick and NovaScotia, Canada between 1972 and 1997. Resulting data were compared to Hg and/or Se concentrations known or suspected tocause reproductive impairment in birds. Organic (methyl) Hg analyses were also performed on a subset of 24 loon eggs. Thirty-nine of 125 eggs had total Hg levels exceeding those (0.6 g g-1 ww, or 2.5 g g-1 dw)previously reported to be associated with reproductive impairment in common loons (Barr, 1986), and 9 of 125 eggshad Hg concentrations higher than the level associated withreproductive impairment in birds generally 1 g g-1 ww; (Thompson, 1996). Selenium concentrations in loon egg samples were less than levels known to cause reproductiveimpairment in birds. A weak but significant positive correlation was observed between egg-Hg and -Se concentrations(r = 0.511, p < 0.05). On average, methylmercury accounted for about 87% of total Hg in 24 eggs analysed for both total and organic Hg. In this subset of eggs, the relationship between organic (methyl) Hg and Se was significant (r = 0.538, p = 0.007) while that found between inorganic Hg and Se in the same eggs was not significant (r = 0.353, p = 0.091). This relationship was unexpected and was contrary to relationships established for organic and inorganic Hg vs. Se in adult loon liver and kidney tissue (Scheuhammer et al., 1998b).  相似文献
9.
Approximately 250 000 kg of mercury was lost towater and soils at the U.S. Dept. of Energy Y-12 Plantin Oak Ridge, Tennessee in the 1950s and early 1960s. A creek originating within the plant receivedcontinuous inputs of waterborne mercury, predominantlyas dissolved inorganic mercury, from groundwater,streambed contamination, and sump and process waterdischarges to the contaminated storm sewer network.These produce aqueous total mercury concentrations of1–2 g L-1 in the upper reaches of the stream,decreasing to about 0.1–0.2 g L-1 in its lowerreaches. A program to reduce mercury concentrationsin the creek identified specific sources (buildingsumps, contaminated springwater seeps, foundationdrains, and contaminated piping) and rerouted wateraround contaminated portions of the drain system orcollected and treated mercury-contaminated waterbefore discharging it. As a result, waterbornemercury concentrations in the creek and total mercuryloading were reduced from 1.8 g L-1 to0.6 g L-1 and 100 to 20 g d-1, respectively, in the last 5 yr.Mean mercury concentrations in fish nearest sourceareas in the creek headwaters decreased at roughly thesame rate as waterborne total mercury concentrationsover the past five years, but at the facility boundarydownstream the decline in mercury bioaccumulation wasmuch less. At sites 5–15 km farther downstream, nodecrease was evident. Dissolved methylmercury tendedto increase with distance downstream in a patterninverse to that noted for its dissolved inorganicmercury precursor.Improvements in water quality and modification ofweirs to allow the passage of fish have resulted inthe establishment of large populations of fish inmercury-contaminated headwater areas previously devoidof fish. It may be that the accumulation, retention,and eventual downstream transport of this reservoir ofbiologically incorporated methylmercury has acted tobuffer against expected reductions in mercury in fishat downstream sites.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号