首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  完全免费   21篇
  评价与监测   121篇
  2020年   8篇
  2019年   7篇
  2018年   5篇
  2017年   27篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2009年   1篇
  2008年   4篇
  2007年   11篇
  2006年   4篇
  2005年   6篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   14篇
  1999年   9篇
  1997年   2篇
排序方式: 共有121条查询结果,搜索用时 203 毫秒
1.
京津冀地区臭氧污染特征与来源分析   总被引:20,自引:20,他引:0  
2013-2014年京津冀地区13个城市O3日最大8 h平均值第90百分位数平均为155~162 μg/m3,京津冀地区已成为全国O3污染最严重的地区之一,京津冀地区O3污染程度有所加重。京津冀地区夏季O3浓度高,冬季浓度低,O3质量浓度较高的月份集中在5-9月,12月-次年1月浓度最低。在O3污染较重的夏季,每日6:00~7:00,O3质量浓度最低,15:00~16:00 O3浓度最高。在空间分布上郊区点位的O3质量浓度往往高于主城区点位。京津冀区域夏季O3小时浓度和NO2浓度呈高度负相关关系,和其他污染物无明显的相关性。O3质量浓度和气温呈显著的正相关关系,和大气相对湿度呈显著的负相关关系。京津冀区域O3的主要来源为NOX 和VOC等一次污染物在日光照射下发生光化学反应而产生,控制O3前体物的源排放,尤其是控制好VOC的排放是控制O3污染的有效途径。  相似文献
2.
气象条件对沈阳市环境空气臭氧浓度影响研究   总被引:20,自引:19,他引:1  
利用2013年沈阳市环境空气监测点位臭氧监测数据,分析沈阳臭氧浓度变化特征,结合气象资料分析了其对臭氧浓度的影响。结果表明,沈阳市不同区域臭氧浓度变化特征基本一致。臭氧浓度日变化呈单峰趋势,最大值出现在14:00左右,最小值出现在6:00左右;臭氧浓度变化具有明显的季节特征,夏季臭氧浓度最高,春秋次之,冬季最低;臭氧浓度受温度、风速、湿度、能见度、天气情况影响,臭氧浓度变化是多因素共同作用的结果。  相似文献
3.
天津市臭氧污染现状与污染特征分析   总被引:20,自引:16,他引:4  
通过臭氧监测实验,系统研究了天津市城区的臭氧污染现状、污染特征和时空分布规律,并从空间上确定了城市城区易发生光化学污染的敏感区域、高发区域.  相似文献
4.
Forest Health Monitoring in the United States: First Four Years   总被引:19,自引:0,他引:19  
To address the need for more effective methods for evaluating and assessing forest ecosystem health, the USDA-Forest Service and the US Environmental Protection Agency through its Environmental Monitoring and Assessment Program developed the Forest Health Monitoring program. The program was initiated in 1990 and by 1994 was present in the major areas of the United States. This paper presents an overview of the program, the indicators and methods developed for the program, and some of the results after four years of monitoring and research.  相似文献
5.
Forest Health Monitoring in the United States: First Four Years   总被引:19,自引:0,他引:19  
To address the need for more effective methods for evaluating and assessing forest ecosystem health, the USDA-Forest Service and the US Environmental Protection Agency through its Environmental Monitoring and Assessment Program developed the Forest Health Monitoring program. The program was initiated in 1990 and by 1994 was present in the major areas of the United States. This paper presents an overview of the program, the indicators and methods developed for the program, and some of the results after four years of monitoring and research.  相似文献
6.
上海臭氧及前体物变化特征与相关性研究   总被引:18,自引:15,他引:3  
于2010年1~12月期间,在上海城区内采用在线连续观测,分析该地区近地臭氧与其前体物的季节变化规律及相关性,探讨了臭氧浓度与OX和NO2光解速率之间的关系。结果表明,观测期间,上海地区O3总超标天数为13天,超标率为3.56%。O3浓度变化呈现明显的秋冬低、春夏高的季节变化。O3浓度日变化规律呈典型单峰变化,O3各前体物呈双峰形分布,冬季O3与NOX的相关性最强。对OX的贡献中,秋冬以NO2为主,春夏以O3为主;夜间以NO2为主,白天以O3为主。臭氧浓度与OX和NO2光解速率变化规律基本一致。  相似文献
7.
京津冀区域臭氧污染趋势及时空分布特征   总被引:12,自引:11,他引:1  
为研究京津冀区域的臭氧(O3)污染情况及其时空分布特征,对2013-2015年京津冀区域13个城市80个国家环境空气监测点位的监测数据进行了统计分析。结果表明:2013-2015年,京津冀区域O3污染状况整体呈加重趋势,其中2014年污染状况最为严重。13个城市中O3污染最严重的城市为北京和衡水,连续3年均超标,且处于上升态势中。区域内不同城市O3污染趋势并不相同。京津冀区域O3浓度变化呈明显的季节变化特征,春末和夏季的O3污染最严重。O3-8 h(臭氧日最大8 h均值)年均值的高值区主要分布在北京中北部、承德和衡水等,2013-2015年第90百分位O3-8 h的高值区均集中分布在北京。O3的浓度峰值时间要晚于NOx 2~5 h。O3在春、夏季呈单峰分布,白天15:00左右出现最大值,在秋、冬季浓度较低,全天波动不大。  相似文献
8.
厦门市空气质量臭氧预报和评估系统   总被引:9,自引:9,他引:0  
为了评价和预测厦门市区空气中臭氧的污染水平,运用2006~2009年的监测数据对臭氧的污染成因及其变化规律进行研究。通过风向、风速、气温、湿度等气象因子对臭氧浓度影响的分析,进而运用多元线性回归法建立厦门市臭氧预报及评估系统。  相似文献
9.
成都市O3浓度的时间变化特征及相关因子分析   总被引:8,自引:7,他引:1  
为深入认知成都市O3浓度的时间变化规律及其影响因子,基于2013年1月1日-12月31日市区站点O3、NO、NO2、NOx的逐时监测资料以及成都市气象站的气象数据逐时观测资料,据此对O3的季变化、日变化、"周末效应"、"节假日效应"进行了讨论,并对其浓度影响因子进行分析。结果表明:成都市O3浓度季变化呈现明显夏高冬低的特征,浓度最大值出现在8月。O3浓度日变化为单峰型,夏季峰值出现在15:00,冬季峰值出现在16:00。市区存在"周末效应",即周末O3浓度总体比工作日高;"节假日效应"则表现出复杂多变性,受气象条件以及人为活动等多种随机因素的影响。O3日平均浓度与NO、NO2、NOx、相对湿度呈明显负相关,与温度、风速呈明显正相关。  相似文献
10.
Disinfection By-Products in Water Produced by Ozonation and Chlorination   总被引:6,自引:0,他引:6  
Water produced by advanced treatment of a groundwater was evaluated to determine the amount of DBPs (Disinfection By-Products) including trihalomethanes (THMs). Both Gas Chromatography (GC) and Gas Chromatography/Mass Spectrometry (GS/MS) were adopted for detection and identification of DBPs such as trihalomethanes (THMs), halo-acetic acids (HAAs) and aldehydes. Two disinfection modes (ozonation followed by chlorination and chlorination alone) were compared to determine the DBPs generation. The mutagenitic acivity of ozonated water, chlorinated water after ozonation and potable water was assessed using the Ames test. Chloroform, dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were the main constituents of THMs and HAAs, respectively. THMs accounted for more than 85% of all DBPs measured, whereas haloacetic acids accounted for around 14%. Ozonation followed by chlorination proved to be better in terms of THMs and HAAs control. The combined system produced 28.3% less DBPs compared to chlorination alone. Ozonation was found capable of reducing mutagenic matter in the groundwater by 54.7%. The combined system also resulted in water with no mutagenicity.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号