首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2075篇
  免费   257篇
  国内免费   250篇
安全科学   51篇
废物处理   73篇
环保管理   292篇
综合类   901篇
基础理论   299篇
污染及防治   620篇
评价与监测   266篇
社会与环境   65篇
灾害及防治   15篇
  2024年   3篇
  2023年   28篇
  2022年   38篇
  2021年   69篇
  2020年   85篇
  2019年   56篇
  2018年   48篇
  2017年   64篇
  2016年   82篇
  2015年   89篇
  2014年   95篇
  2013年   160篇
  2012年   155篇
  2011年   227篇
  2010年   137篇
  2009年   222篇
  2008年   199篇
  2007年   168篇
  2006年   123篇
  2005年   66篇
  2004年   61篇
  2003年   74篇
  2002年   57篇
  2001年   39篇
  2000年   46篇
  1999年   23篇
  1998年   17篇
  1997年   23篇
  1996年   20篇
  1995年   12篇
  1994年   14篇
  1993年   28篇
  1992年   19篇
  1991年   3篇
  1990年   8篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有2582条查询结果,搜索用时 15 毫秒
1.
明确了建设用地土壤污染状况调查监管的对象,分析了我国现阶段调查监管存在的监管力量不足、从业门槛不明确、实时监管措施缺乏等问题。结合国内外调查工作监管经验和近年苏州工业园区调查监管的探索实践,提出了鼓励引导相关利益方参与调查监管、建立健全从业人员和机构监管制度、引入监理机制、推进信息化过程管理等对策建议。  相似文献   
2.
李会杰  单文丽 《环境与发展》2020,(2):154-154,156
质量保证与质量控制措施是土壤监测工作在具体开展过程中确保其监测结果准确性、代表性、全面性的重要措施,同时也是土壤监测工作在具体开展过程中的核心工作内容。在环境保护与可持续发展战略情况下,采取全面有效的质量保证与质量控制措施可以确保并优化土壤监测结果的真实性、准确性和全面性,对促进土壤监测工作的优化发展具有非常重要的意义。基于此,本文针对土壤监测工作开展过程中应当实施的各项质量保证与质量控制措施进行了分析总结。  相似文献   
3.
针对土壤环境监测的复杂性和特殊性,从空白试验、检出限、方法验证、质量控制和标准文本等方面,指出了《环境监测分析方法标准制修订技术导则》《HJ 168—2010》对土壤环境监测标准制修订工作的适用性和执行中存在的问题。提出,为保证土壤标准制修订质量和标准执行质量,应研究适宜土壤监测方法标准的质量控制指标体系和评价体系,及时修订《HJ 168—2010》或发布补充要求;对现有土壤监测方法标准进行技术评估,加强对于土壤标准制修订工作的指导和监管。  相似文献   
4.
Mining operations result in a wide range of environmental impacts: acid mine drainage (AMD) and acid sulfate soils being among the most common. Due to their acidic pH and high soluble metal concentrations, both AMD and acid sulfate soils can severely damage the local ecosystems. Proper post‐mining management practices are necessary to control AMD‐related environmental issues. Current AMD‐impacted soil treatment technologies are rather expensive and typically not environmentally sustainable. We conducted a 60‐day bench‐scale study to evaluate the potential of a cost‐effective and environment‐friendly technology in treating AMD‐impacted soils. The metal binding and acid‐neutralizing capacity of an industrial by‐product, drinking water treatment residuals (WTRs) were used for AMD remediation. Two types of locally generated WTRs, an aluminum‐based WTR (Al‐WTR) and a lime‐based WTR (Ca‐WTR) were used. Highly acidic AMD‐impacted soil containing very high concentrations of metals and metalloids, such as iron, nickel, and arsenic, was collected from the Tab‐Simco coal mine in Carbondale, Illinois. Soil amendment using a 1:1 Al‐ and Ca‐WTR mix, applied at 5 and 10 percent rates significantly lowered the soluble and exchangeable fractions of metals in the AMD‐impacted soil, thus lowering potential metal toxicity. Soil pH increased from an extremely acidic 2.69 to a near‐neutral 6.86 standard units over the 60‐day study period. Results from this preliminary study suggest the possibility of a successful scale‐up of this innovative, cost‐effective, and environmentally sustainable technology for remediating AMD‐impacted acid sulfate soils.  相似文献   
5.
The word “textile” means to weave and was taken from the Latin word “texere.” Nowadays, textiles not only fulfill humankind's basic necessity for clothing, they also allow individuals to make fashion statements. As one of the oldest industries, the textile industry occupies a unique place in India. It is responsible for 14% of the total industrial manufacture in India. However, the textile industry is also considered to be one of the biggest threats to the environment. Pretreatment, dyeing, printing, and finishing operations are among the various stages of the industrial textile manufacturing process. These fabrication operations not only utilize huge quantities of power and water, they also generate considerable amounts of waste. The textile industry utilizes a number of dyes, chemicals, and other materials to impart the required qualities to the fabrics. These operations produce a significant amount of effluents. The quality of effluents is such that they cannot be put to other uses, and they can create environmental problems if they are disposed of without appropriate treatment. This review discusses different textile processing stages, pollution problems associated with these stages, and their eco‐friendly alternatives. Textile wet processing is described in detail, as it is the key process in the industry and it also generates the greatest amount of pollutants in textile processing. The environmental impact of textile effluents is discussed, as textile effluents not only impose negative effects on the quality of water and soil, they also imperil plant and animal health. In this paper, various methods for treating textile effluents are described. Discussion of physical, chemical, biological, and advanced treatment technologies of effluent treatment are included in this paper.  相似文献   
6.
Veterinary antibiotics used in agriculture can be introduced into the environment through land application of animal manure, accumulating in soils and groundwaters and posing a significant risk to human health and animal well-being. As the analysis of tetracyclines in soil is challenging due to their strong interaction with soil minerals and organic carbon, the objective of this study was to develop a reliable and reproducible method for quantitative analysis of chlortetracycline and oxytetracycline, and their respective metabolites in soils. A method based on pressurized liquid extraction (PLE) with in-cell clean-up was developed for the extraction of chlortetracycline and oxytetracycline and four likely metabolites from a set of four soils. Optimized conditions included a cell size of 22?mL, soil loading of 5?g, pH of 8.0, methanol:water ratio of 3:1, 50?°C, and two cycles. Soil extracts were analysed by high-performance liquid chromatography (HPLC) coupled with ion trap mass spectrometry (MS). Recoveries of seven tetracyclines from soil ranged from 41% to 110%. The limits of detection for tetracyclines were 0.08–0.3 µg g?1 soil, and intra- and inter-day variation ranged from 0.12–0.34%. The proposed PLE method is suitable for quantification of tetracyclines in agricultural soils at typical concentrations expected in contaminated environments.  相似文献   
7.
Chlorinated ethenes such as trichloroethene (TCE), cis‐1,2‐dichloroethene (cis‐1,2‐DCE), and vinyl chloride along with per‐ and polyfluoroalkyl substances (PFAS) have been identified as chemicals of concern in groundwater; with many of the compounds being confirmed as being carcinogens or suspected carcinogens. While there are a variety of demonstrated in‐situ technologies for the treatment of chlorinated ethenes, there are limited technologies available to treat PFAS in groundwater. At a former industrial site shallow groundwater was impacted with TCE, cis‐1,2‐DCE, and vinyl chloride at concentrations up to 985, 258, and 54 µg/L, respectively. The groundwater also contained maximum concentrations of the following PFAS: 12,800 ng/L of perfluoropentanoic acid, 3,240 ng/L of perfluorohexanoic acid, 795 ng/L of perfluorobutanoic acid, 950 ng/L of perfluorooctanoic acid, and 2,140 ng/L of perfluorooctanesulfonic acid. Using a combination of adsorption, biotic, and abiotic degradation in situ remedial approaches, the chemicals of concern were targeted for removal from the groundwater with adsorption being utilized for PFAS whereas adsorption, chemical reduction, and anaerobic biodegradation were used for the chlorinated ethenes. Sampling of the groundwater over a 24‐month period indicated that the detected PFAS were treated to either their detection, or below the analytical detection limit over the monitoring period. Postinjection results for TCE, cis‐1,2‐DCE, and vinyl chloride indicated that the concentrations of the three compounds decreased by an order of magnitude within 4 months of injection, with TCE decreasing to below the analytical detection limit over the 24‐month monitoring period. Cis‐1,2‐DCE, and vinyl chloride concentrations decreased by over 99% within 8 months of injections, remaining at or below these concentrations during the 24‐month monitoring period. Analyses of Dehalococcoides, ethene, and acetylene over time suggest that microbiological and reductive dechlorination were occurring in conjunction with adsorption to attenuate the chlorinated ethenes and PFAS within the aquifer. Analysis of soil cores collected pre‐ and post‐injection, indicated that the distribution of the colloidal activated carbon was influenced by small scale heterogeneities within the aquifer. However, all aquifer samples collected within the targeted injection zone contained total organic carbon at concentrations at least one order of magnitude greater than the preinjection total organic carbon concentrations.  相似文献   
8.
• Sulfidation significantly enhanced As(V) immobilization in soil by zerovalent iron. • S-ZVI promoted the conversion of exchangeable As to less mobile Fe-Mn bound As. • Column test further confirmed the feasibility of sulfidated ZVI on As retention. • S-ZVI amendment and magnetic separation markedly reduced TCLP leachability of As. In this study, the influences of sulfidation on zero-valent iron (ZVI) performance toward As(V) immobilization in soil were systemically investigated. It was found that, compared to unamended ZVI, sulfidated ZVI (S-ZVI) is more favorable to immobilize As(V) in soil and promote the conversion of water soluble As to less mobile Fe-Mn bound As. Specifically, under the optimal S/Fe molar ratio of 0.05, almost all of the leached As could be sequestrated by>0.5 wt.% S-ZVI within 3 h. Although the presence of HA could decrease the desorption of As from soil, HA inhibited the reactivity of S-ZVI to a greater extent. Column experiments further proved the feasibility of applying S-ZVI on soil As(V) immobilization. More importantly, to achieve a good As retention performance, S-ZVI should be fully mixed with soil or located on the downstream side of As migration. The test simulating the flooding conditions in rice culture revealed there was also a good long-term stability of soil As(V) after S-ZVI remediation, where only 0.7% of As was desorbed after 30 days of incubation. Magnetic separation was employed to separate the immobilized As(V) from soil after S-ZVI amendment, where the separation efficiency was found to be dependent of the iron dosage, liquid to soil ratio, and reaction time. Toxicity characteristic leaching procedure (TCLP) tests revealed that the leachability of As from soil was significantly reduced after the S-ZVI amendment and magnetic separation treatment. All these findings provided some insights into the remediation of As(V)-polluted soil by ZVI.  相似文献   
9.
土壤污染修复产业是环保产业新一轮发展的重点,其市场规模在未来可能是千亿级或万亿级。我国土壤污染修复产业发展面临要素支撑能力不强、配套基础条件薄弱和环境监管基础能力不足三大难题。需要从强化土壤污染修复人才的引进、储备和培养,以科技创新能力提升支撑土壤污染修复产业的发展,拓展投融资渠道、夯实土壤污染修复产业发展的资金保障三方面入手加强土壤污染修复产业的要素支撑能力建设;培育和壮大土壤污染修复产业集群,推进污染土壤污染修复环境管理与工程示范;完善土壤污染修复产业配套基础条件;加强环境监管能力建设,完善土壤环境管理体系,提升项目管理水平。  相似文献   
10.
以2014年为基准年,以常州市行政边界为研究区域,利用卫星遥感解译的土地利用类型和裸土面积信息,并通过国土、气象等部门提供的土壤类型、气象因子等相关资料获取本地化因子和参数,估算常州市行政区域内裸露地面土壤扬尘中颗粒物的年排放量。结果表明:常州市裸露地面主要分布在金坛市、溧阳市和武进区,市中心区域最少,裸露土地利用类型主要为农田、滩涂、裸露山体、荒地及未硬化或未绿化的空地等;2014年常州市行政区域内裸露地面风蚀扬尘中TSP、PM 10、PM 2.5的年排放量分别为62.66 t、5.63 t、0.24 t,其中,金坛市土壤起尘量最大,其次为武进区,再次为新北区、溧阳市,市中心区域土壤扬尘最少。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号