全文获取类型
收费全文 | 41篇 |
免费 | 9篇 |
国内免费 | 15篇 |
专业分类
安全科学 | 5篇 |
环保管理 | 3篇 |
综合类 | 39篇 |
污染及防治 | 15篇 |
评价与监测 | 3篇 |
出版年
2025年 | 1篇 |
2023年 | 4篇 |
2022年 | 6篇 |
2021年 | 3篇 |
2020年 | 2篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2016年 | 1篇 |
2015年 | 8篇 |
2014年 | 2篇 |
2013年 | 1篇 |
2012年 | 2篇 |
2011年 | 4篇 |
2009年 | 1篇 |
2008年 | 3篇 |
2007年 | 2篇 |
2006年 | 2篇 |
2005年 | 2篇 |
2004年 | 1篇 |
2003年 | 2篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 4篇 |
1998年 | 4篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1993年 | 1篇 |
排序方式: 共有65条查询结果,搜索用时 15 毫秒
1.
Effects of gas flow rate, inlet concentration and temperature on the biofiltration of toluene vapors 总被引:2,自引:0,他引:2
Vergara-Fernández A Lara Molina L Pulido NA Aroca G 《Journal of environmental management》2007,84(2):115-122
In this work the variation in the elimination capacity of a biofilter as a function of the gas flow and toluene concentration was studied. A bioreactor 0.75 m high x 14.5 cm diameter was used, divided into three equal stages, using compost to support the microorganisms, and sea shells to control the pH. The biofiltration of toluene was evaluated for flows between 0.12 and 0.73 m(3)h(-1) in a concentration range of 1-3.2 gm(-3). It was observed that on increasing the toluene inlet load by 90% (from 37 to 70 gm(3)h(-1)), the conversion by the biofilter varied by only 5% (from 98% to 93%). The biofiltration system used achieved elimination capacities of up to 82 gm(-3)h(-1) for a toluene load of 100 gm(-3)h(-1). 相似文献
2.
Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression. 相似文献
3.
Herein, Na+ and Ca2+ are introduced to MnO2 through cation-exchange method. The presence of Na+ and Ca2+ significantly enhance the catalytic activity of MnO2 in toluene oxidation. Among them, the Ca-MnO2 catalyst exhibits the best catalytic activity (T50 = 194°C, T90 = 215°C, Ea = 57.2 kJ/mol, reaction rate 8.40 × 10?10 mol/(sec?m2) at 210°C. T50 and T90: the temperature of 50% and 90% toluene conversion; Ea: apparent activation energy) and possess high tolerance against 2.0 vol.% water vapor. Results reveal that the increased acidic sites of the MnO2 sample can enhance the adsorption of gaseous toluene, and the mobility of oxygen species and the content of reactive oxygen species in the catalyst are significantly improved due to the formed oxygen vacancy. Thus these two factors result in excellent catalytic performance for toluene oxidation combining with the weak CO2 adsorption ability. 相似文献
4.
超临界态二氧化碳再生活性炭法治理甲苯废气 总被引:14,自引:0,他引:14
制鞋业产生的含甲苯、苯和二甲苯废气的治理大多采用活性炭吸附法。该课题提出以压缩二氧化碳为脱附剂,采用超临界流体萃取技术再生活性炭及回收甲苯工艺。实验表明,以液态或超临界态的压缩二氧化碳作萃取剂,采用萃取法可完全再生活性炭,其采用液态优于超临界态;压缩二氧化碳对活性炭具有扩孔作用,可增加活性炭的吸附容量,多次再生的活性炭吸附容量几乎不变;萃取剂的用量和密度显著影响着活性炭的再生效率;活性炭捆包填充在脱附塔中,不会显著增加脱附的阻力。 相似文献
5.
Cu–Mn, Cu–Mn–Ce, and Cu–Ce mixed-oxide catalysts were prepared by a citric acid sol–gel method and then characterized by XRD, BET, H2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu–Mn–Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu–Mn–Ce catalyst, a portion of Cu and Mn species entered into the CeO2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu–Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu–Mn and Cu–Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species. 相似文献
6.
We report measurements of solubility limits for benzene, toluene, and TCE in systems that contain varying levels of biomass up to 0.13 g mL−1 for TCE and 0.25 g mL−1 for benzene and toluene. The solubility limit increased from 21 to 48 mM when biomass (in the form of yeast) was added to aqueous batch systems containing benzene. The toluene solubility limit increased from 4.9 to greater than 20 mM. For TCE, the solubility increased from 8 mM to more than 1000 mM. Solubility for TCE (trichloroethylene) was most heavily impacted by biomass levels, changing by two orders of magnitude as the microbial concentrations approach those in biofilms. 相似文献
7.
Bauer RD Maloszewski P Zhang Y Meckenstock RU Griebler C 《Journal of contaminant hydrology》2008,96(1-4):150-168
Various abiotic and biotic processes such as sorption, dilution, and degradation are known to affect the fate of organic contaminants, such as petroleum hydrocarbons in saturated porous media. Reactive transport modeling of such plumes indicates that the biodegradation of organic pollutants is, in many cases, controlled by mixing and therefore occurs locally at the plume's fringes, where electron donors and electron-acceptors mix. Herein, we aim to test whether this hypothesis can be verified by experimental results obtained from aerobic and anaerobic degradation experiments in two-dimensional sediment microcosms. Toluene was selected as a model compound for oxidizable contaminants. The two-dimensional microcosm was filled with quartz sand and operated under controlled flow conditions simulating a contaminant plume in otherwise uncontaminated groundwater. Aerobic degradation of toluene by Pseudomonas putida mt-2 reduced a continuous 8.7 mg L(-1) toluene concentration by 35% over a transport distance of 78 cm in 15.5 h. In comparison, under similar conditions Aromatoleum aromaticum strain EbN1 degraded 98% of the toluene infiltrated using nitrate (68.5+/-6.2 mg L(-1)) as electron acceptor. A major part of the biodegradation activity was located at the plume fringes and the slope of the electron-acceptor gradient was steeper during periods of active biodegradation. The distribution of toluene and the significant overlap of nitrate at the plume's fringe indicate that biokinetic and/or microscale transport processes may constitute additional limiting factors. Experimental data is corroborated with results from a reactive transport model using double Monod kinetics. The outcome of the study shows that in order to simulate degradation in contaminant plumes, detailed data sets are required to test the applicability of models. These will have to deal with the incorporation of existing parameters coding for substrate conversion kinetics and microbial growth. 相似文献
8.
生物法降解低浓度含甲苯废气的研究 总被引:3,自引:1,他引:3
筛选出以甲苯为唯一碳源的高效降解甲苯的假单孢菌Pseudmonas sp.ZD5,并设计生物滤池装置,研究了温度为10-50℃、相对湿度为50%-80%、人口甲苯浓度为1000-4500mg/m^3、气流量为0.3-0.7m^3/h的操作条件对甲苯降解率的影响,得出甲苯最高降解率为89.7%,表明此细菌降解低浓度甲苯废气有较好的效果。 相似文献
9.
Little information is available about the toxicity of toluene, ethylbenzene and xylene acting on macrophytes, and their toxicity data are rarely used in regulation and criteria decisions. The results extended the knowledge on toxic effects of toluene, ethylbenzene and xylene on aquatic plants. The responses of Hydrilla verticillata to these pollutants were investigated. Chlorophyll levels, lipid peroxidation, and antioxidant enzymes (superoxide dismutase and guaiacol peroxidase) showed diverse responses at different concentrations of toluene, ethylbenzene and xylene. The linear regression analyses were performed respectively, suggesting the concentrations of toluene, ethylbenzene and xylene expected to protect aquatic macrophytes were 7.30 mg L−1, 1.15 mg L−1 and 2.36 mg L−1, respectively. This study emphasized that aquatic plants are also sensitive to organic pollutants as fishes and zooplanktons, indicating that macrophytes could be helpful in predicting the toxicity of these pollutants and should be considered in regulation and criteria decisions for aquatic environment protection. 相似文献
10.
Vapor wall losses can affect the yields of secondary organic aerosol. The effects of surface-to-volume (S/V) ratio and relative humidity (RH) on the vapor-wall interactions were investigated in this study. The oxygenated volatile organic compounds (OVOCs) were generated from toluene-H2O2 irradiations. The average gas to wall loss rate constant (kgw) of OVOCs in a 400 L reactor (S/V = 7.5 m−1) is 2.47 (2.41 under humid conditions) times higher than that in a 5000 L reactor (S/V = 3.6 m−1) under dry conditions. In contrast, the average desorption rate constant (kwg) of OVOCs in 400 L reactor is only 1.37 (1.20 under humid conditions) times higher than that in 5000 L reactor under dry conditions. It shows that increasing the S/V ratio can promote the wall losses of OVOCs. By contrast, the RH effect on kgw is not prominent. The average kgw value under humid conditions is almost the same as under dry conditions in the 400 L (5000 L) reactor. However, increasing RH can decrease the desorption rates. The average kwg value under dry conditions is 1.45 (1.27) times higher than that under humid conditions in the 400 L (5000 L) reactor. The high RH can increase the partitioning equilibrium timescales and enhance the wall losses of OVOCs. 相似文献