排序方式: 共有68条查询结果,搜索用时 43 毫秒
1.
Snowmobile use in Yellowstone National Park has been shown to impact air quality, with implications for the safety and welfare
of Park staff and other Park resource values. Localized impacts have been documented at several high-use sites in the Park,
but the broader spatial variability of snowmobile emissions and air quality was not understood. Measurements of 87 volatile
organic compounds (VOCs) were made for ambient air sampled across the Park and West Yellowstone, Montana, during 2 days of
the 2002–2003 winter use season, 1 year before the implementation of a new snowmobile policy. The data were compared with
similar data from pristine West Coast sites at similar latitudes. Backward trajectories of local air masses, alkyl nitrate-parent
alkane ratios, and atmospheric soundings were used to identify the VOC sources and assess their impact. Different oversnow
vehicle types used in the Park were sampled to determine their relative influence on air mass pollutant composition. VOCs
were of local origin and demonstrated strong spatiotemporal variability that is primarily influenced by levels of snowmobile
traffic on given road segments at different times of day. High levels of snowmobile traffic in and around West Yellowstone
produced consistently high levels of benzene, toluene, and carbon monoxide. 相似文献
2.
Yu Y Wen S Lü H Feng Y Wang X Sheng G Fu J 《Environmental monitoring and assessment》2008,137(1-3):275-285
The diurnal variation of atmospheric carbonyls and VOCs in a forest in south China were studied in summer 2004. Twenty kinds
of carbonyls and eight kinds of VOCs were identified and quantified. Formaldehyde and acetaldehyde were the two most abundant
carbonyls, while the most abundant VOCs were isoprene, followed by o-xylene. Most C3-C10 carbonyls had higher concentrations from 09:00 to 15:00, and their levels were lower during night-time and often reached
the lowest in early morning. Formaldehyde and acetaldehyde, however, showed two high levels in their diurnal patterns partly
due to their different sources and sinks. The VOCs had different diurnal patterns compared to most carbonyls. The highest
concentrations were observed from 03:00 to 06:00 for 1-butene, from 06:00 to 12:00 for isoprene, and from 12:00 to 15:00 for
α-pinene. The highest levels for aromatic hydrocarbons occurred during midnight and the lowest in late afternoon. According
to the study, emissions from vegetation and photo-oxidation of gas-phase hydrocarbons were the main sources for some carbonyls
and VOCs in this region. Other compounds, such as formaldehyde, acetaldehyde and BTEX, showed anthropogenic sources. 相似文献
3.
The atmosphere is a particularly difficult analytical system because of the very low levels of substances to be analysed,
sharp variations in pollutant levels with time and location, differences in wind, temperature and humidity. This makes the
selection of an efficient sampling technique for air analysis a key step to reliable results. Generally, methods for volatile
organic compounds sampling include collection of the whole air or preconcentration of samples on adsorbents. All the methods
vary from each other according to the sampling technique, type of sorbent, method of extraction and identification technique.
In this review paper we discuss various important aspects for sampling of volatile organic compounds by the widely used and
advanced sampling methods. Characteristics of various adsorbents used for VOCs sampling are also described. Furthermore, this
paper makes an effort to comprehensively review the concentration levels of volatile organic compounds along with the methodology
used for analysis, in major cities of the world. 相似文献
4.
Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds
下载免费PDF全文

Shuangchun Lu Qingling Liu Rui Han Miao Guo Jiaqi Shi Chunfeng Song Na Ji Xuebin Lu Degang Ma 《环境科学学报(英文版)》2021,33(7):184-203
Volatile organic compounds (VOCs) with high toxicity and carcinogenicity are emitted from kinds of industries, which endanger human health and the environment. Adsorption is a promising method for the treatment of VOCs due to its low cost and high efficiency. In recent years, activated carbons, zeolites, and mesoporous materials are widely used to remove VOCs because of their high specific surface area and abundant porosity. However, the hydrophilic nature and low desorption rate of those materials limit their commercial application. Furthermore, the adsorption capacities of VOCs still need to be improved. Porous organic polymers (POPs) with extremely high porosity, structural diversity, and hydrophobic have been considered as one of the most promising candidates for VOCs adsorption. This review generalized the superiority of POPs for VOCs adsorption compared to other porous materials and summarized the studies of VOCs adsorption on different types of POPs. Moreover, the mechanism of competitive adsorption between water and VOCs on the POPs was discussed. Finally, a concise outlook for utilizing POPs for VOCs adsorption was discussed, noting areas in which further work is needed to develop the next-generation POPs for practical applications. 相似文献
5.
Kun Zhang Jialuo Xu Qing Huang Lei Zhou Qingyan Fu Yusen Duan Guangli Xiu 《Frontiers of Environmental Science & Engineering》2020,14(6):92
6.
VOC emission caps constrained by air quality targets based on response surface model: A case study in the Pearl River Delta Region, China
下载免费PDF全文

Junyu Zheng Bowen Shi Xin Yuan Chuanzeng Zheng Yufan Yu Zhijiong Huang 《环境科学学报(英文版)》2023,35(1):430-445
Because of the recent growth in ground-level ozone and increased emission of volatile organic compounds (VOCs), VOC emission control has become a major concern in China. In response, emission caps to control VOC have been stipulated in recent policies, but few of them were constrained by the co-control target of PM2.5 and ozone, and discussed the factor that influence the emission cap formulation. Herein, we proposed a framework for quantification of VOC emission caps constrained by targets for PM2.5 and ozone via a new response surface modeling (RSM) technique, achieving 50% computational cost savings of the quantification. In the Pearl River Delta (PRD) region, the VOC emission caps constrained by air quality targets varied greatly with the NOx emission reduction level. If control measures in the surrounding areas of the PRD region were not considered, there could be two feasible strategies for VOC emission caps to meet air quality targets (160 µg/m3 for the maximum 8-hr-average 90th-percentile (MDA8-90%) ozone and 25 µg/m3 for the annual average of PM2.5): a moderate VOC emission cap with <20% NOx emission reductions or a notable VOC emission cap with >60% NOx emission reductions. If the ozone concentration target were reduced to 155 µg/m3, deep NOx emission reductions is the only feasible ozone control measure in PRD. Optimization of seasonal VOC emission caps based on the Monte Carlo simulation could allow us to gain higher ozone benefits or greater VOC emission reductions. If VOC emissions were further reduced in autumn, MDA8-90% ozone could be lowered by 0.3-1.5 µg/m3, equaling the ozone benefits of 10% VOC emission reduction measures. The method for VOC emission cap quantification and optimization proposed in this study could provide scientific guidance for coordinated control of regional PM2.5 and O3 pollution in China. 相似文献
7.
Investigating missing sources of glyoxal over China using a regional air quality model (RAMS-CMAQ)
下载免费PDF全文

Jialin Li Meigen Zhang Guiqian Tang Fangkun Wu Leonardo M.A. Alvarado Mihalis Vrekoussis Andreas Richter John P. Burrows 《环境科学学报(英文版)》2018,30(9):108-118
Currently, modeling studies tend to significantly underestimate observed space-based glyoxal(CHOCHO) vertical column densities(VCDs), implying the existence of missing sources of glyoxal. Several recent studies suggest that the emissions of aromatic compounds and molar yields of glyoxal in the chemical mechanisms may both be underestimated, which can affect the simulated glyoxal concentrations. In this study, the influences of these two factors on glyoxal amounts over China were investigated using the RAMS-CMAQ modeling system for January and July 2014. Four sensitivity simulations were performed, and the results were compared to satellite observations. These results demonstrated significant impacts on glyoxal concentrations from these two factors.In case 1, where the emissions of aromatic compounds were increased three-fold,improvements to glyoxal VCDs were seen in high anthropogenic emissions regions. In case 2, where molar yields of glyoxal from isoprene were increased five-fold, the resulted concentrations in July were 3–5-fold higher, achieving closer agreement between the modeled and measured glyoxal VCDs. The combined changes from both cases 1 and 2 were applied in case 3, and the model succeeded in further reducing the underestimations of glyoxal VCDs. However, the results over most of the regions with pronounced anthropogenic emissions were still underestimated. So the molar yields of glyoxal from anthropogenic precursors were considered in case 4. With these additional mole yield changes(a two-fold increase), the improved concentrations agreed better with the measurements in regions of the lower reaches of the Yangtze River and Yellow River in January but not in July. 相似文献
8.
采用便携式气相色谱/质谱联用热脱附法直接测定环境空气中的挥发性有机物,优化了试验条件。方法在5×10-9~100×10-9范围内线性良好,39种化合物的检出限为1.1μg/m3~19μg/m3,标准气体平行测定的RSD≤11.0%,回收率在80%~120%之间。 相似文献
9.
挥发性有机物(VOCs)是对流层臭氧和二次有机气溶胶等二次污染生成过程的关键前体物.研究VOCs的浓度水平、组成特征和反应活性对揭示复合型大气污染的形成机制具有重要意义.本研究利用在线气相-氢离子火焰法测量了2009年春节和"五一"节期间上海市城区大气中56种VOCs.结果表明,上海市城区大气受机动车尾气排放源影响明显,VOCs浓度日变化特征呈双峰状,与上下班交通高峰基本吻合.大气中VOCs平均体积分数为(28.39±18.35)×10-9;各组分百分含量依次为:烷烃46.6%,芳香烃27.0%,烯烃15.1%,乙炔11.2%.用OH消耗速率和臭氧生成潜势(OFP)评估了VOCs大气化学反应活性,结果表明,上海市城区大气VOCs化学反应活性与VOCs体积浓度相关性良好;VOCs活性与乙烯相当,平均化学反应活性较强;OH消耗速率贡献最大的物种是烯烃51.2%和芳香烃31.8%;OFP贡献最大的物种是芳香烃53.4%和烯烃30.2%;对臭氧生成贡献最大的关键活性物种为丙烯、乙烯、甲苯、二甲苯以及丁烯类物质. 相似文献
10.
建立了使用活性炭管采集臭气中的挥发性有机物,经二硫化碳解吸,用GC-MS仪Scan扫描方式确定挥发性有机物的组分后优化GC-MS条件定性定量分析上海化学工业区污水处理厂臭气中主要挥发性有机物的方法。结果表明,从臭气中检测出11种VOCs,线性相关系数R2均大于0.99,相对标准偏差为3.0%~4.7%,除了苯乙烯、α-甲基苯乙烯和4-甲基苯乙烯的解吸效率依次分别为72%、74%和66%,其他挥发性有机物的解吸效率均为91%~100%。本方法操作简便,能够有效分离和准确测定臭气中挥发性有机物,具有较低的检出限和较好的精确度,适合臭气中挥发性有机物的检测分析,可为臭气控制提供可靠的数据。 相似文献