首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  完全免费   3篇
  评价与监测   15篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2001年   2篇
  1999年   2篇
  1996年   2篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
人工神经网络在水环境质量评价中的应用   总被引:7,自引:0,他引:7  
为了将人工神经网络应用于水环境质量评价,应用了人工神经网络B—P算法,构造了水环境质量评价模型,该模型应用于实例评价结果表明,人工神经网络用于环境质量评价具有客观性,通用性和实用性。  相似文献
2.
Biodiversity studies in ecology often begin with the fitting and documentation of sampling data. This study is conducted to make function approximation on sampling data and to document the sampling information using artificial neural network algorithms, based on the invertebrate data sampled in the irrigated rice field.Three types of sampling data, i.e., the curve species richness vs. the sample size, the curve rarefaction, and the curve mean abundance of newly sampled species vs.the sample size, are fitted and documented using BP (Backpropagation) network and RBF (Radial Basis Function) network. As the comparisons, The Arrhenius model, and rarefaction model, and power function are tested for their ability to fit these data. The results show that the BP network and RBF network fit the data better than these models with smaller errors.BP network and RBF network can fit non-linear functions (sampling data) with specified accuracy and don't require mathematical assumptions. In addition to the interpolation, BP network is used to extrapolate the functions and the asymptote of the sampling data can be drawn. BP network cost a longer time to train the network and the results are always less stable compared to the RBF network. RBF network require more neurons to fit functions and generally it may not be used to extrapolate the functions. The mathematical function for sampling data can be exactly fitted using artificial neural network algorithms by adjusting the desired accuracy and maximum iterations. The total numbers of functional species of invertebrates in the tropical irrigated rice field are extrapolated as 140 to 149 using trained BP network, which are similar to the observed richness.  相似文献
3.
大气环境数据分析预测方法对比研究   总被引:3,自引:2,他引:1  
以西安市2006年9月27日至2008年5月3日每日的SO2平均浓度时间序列为例,应用时间序列分析对前555个数据进行拟合,得到合适的时间序列模型ARIMA(1,1,2);利用神经网络中的BP神经网络和RBF神经网络对同样的样本进行训练,用这三种方法对2008年4月4日至2008年5月3日的SO2日均浓度值进行了预测,并用同样的方法分析预测了同期PM10日均浓度值,最后比较了它们的预测效果。结果表明,利用这三种方法进行浓度预测都是可行的,其中RBF神经网络法的预测误差最小,效果最好。  相似文献
4.
人工神经网络用于铅的化学形态模拟计算   总被引:1,自引:0,他引:1  
邓勃  莫华 《干旱环境监测》1996,10(3):155-162
用前馈线性网络法求解水体系中Pb(2+)与OH-之间的反应常数,不同训练算法对求解结果的精度、收敛速度及权值均有影响.结果表明,批处理算法的精度最好,权值不出现负值,但运算时间最长;在线算法的精度虽不如批处理算法,而比数据变换-在线算法好,权值有时会出现负值.运算时间较长;数据变换-在线算法的优点是运算时间短,但相对误差较大,权值出现负值的机会多。采用反馈网络模拟计算铅的各种化学形态的浓度.用物料核算的方法对反馈网络模型进行检验表明,此种模型用于平衡计算是可行的,详细分析了理论模拟和实验曲线的差异的原因,温度的影响最小,在4<pH<9时,CO有重要的影响.在国代检验时,n值取整所引入的误差的影响亦不可忽视。从本文的结果可以看到,采用前馈网络和反馈网络相结合的方法考察水体中的化学形态是可行的.从而为解决这一类问题提供了一种可能的途径.  相似文献
5.
This paper describes the development of artificial neural network (ANN) based carbon monoxide (CO) persistence (ANNCOP) models to forecast 8-h average CO concentration using 1-h maximum predicted CO data for the critical (winter) period (November–March). The models have been developed for three 8-h groupings of 10 p.m. to 6 a.m., 6 a.m. to 2 p.m. and 2–10 p.m., at two air quality control regions (AQCRs) in Delhi city, representing an urban intersection and an arterial road consisting heterogeneous traffic flows. The result indicates that time grouping of 2–10 pm is dominantly affected by inversion conditions and peak traffic flow. The ANNCOP model corresponding to this grouping predicts the 8-h average CO concentrations within the accuracy range of 68–71%. The CO persistence values derived from ANNCOP model are comparable with the persistence values as suggested by the Environmental Protection Agency (EPA), USA. This work demonstrates that ANN based model is capable of describing winter period CO persistence phenomena.  相似文献
6.
将B-P网络原理与逐步聚类分析思想相结合,用于环境测点聚类优选。该方法用于水清河几个监测断面的优选结果是符合客观实际的。  相似文献
7.
Urban air pollution is a growing problem in developing countries. Some compounds especially sulphur dioxide (SO2) is considered as typical indicators of the urban air quality. Air pollution modeling and prediction have great importance in preventing the occurrence of air pollution episodes and provide sufficient time to take the necessary precautions. Recently, various stochastic image-processing algorithms such as Artificial Neural Network (ANN) are applied to environmental engineering. ANN structure employs input, hidden and output layers. Due to the complexity of the problem, as the number of input–output parameters differs, ANN model settings such as the number of neurons of these layers changes. The ability of ANN models to learn, particularly capability of handling large amounts (or sets) of data simultaneously as well as their fast response time, are invariably the characteristics desired for predictive and forecasting purposes. In this paper, ANN models have been used to predict air pollutant parameter in meteorological considerations. We have especially focused on modeling of SO2 distribution and predicting its future concentration in Istanbul, Turkey. We have obtained data sets including meteorological variables and SO2 concentrations from Istanbul-Florya meteorological station and Istanbul-Yenibosna air pollution station. We have preferred three-layer perceptron type of ANN which consists of 10, 22 and 1 neurons for input, hidden and output layers, respectively. All considered parameters are measured as daily mean. The input parameters are: SO2 concentration, pressure, temperature, humidity, wind direction, wind speed, strength of sunshine, sunshine, cloudy, rainfall and output parameter is the future prediction of SO2. To evaluate the performance of ANN model, our results are compared to classical nonlinear regression methods. The over all system finds an optimum correlation between input–output variables. Here, the correlation parameter, r is 0.999 and 0.528 for training and test data. Thus in our model, the trend of SO2 is well estimated and seasonal effects are well represented. As a result, we conclude that ANN is one of the compromising methods in estimation of environmental complex air pollution problems.  相似文献
8.
针对目前水质综合评价中常规方法存在的问题 ,提出了径向基函数网络模型 (简记为 RBF-ANN)。以吉林省白城市地下潜水水质资料为例 ,运用该方法对监测样点进行了综合评价。通过与其它方法对比 ,结果表明 ,利用RBF-ANN模型进行水环境质量综合评价不仅方法简便 ,而且结论更接近客观实际。  相似文献
9.
讨论了人工神经网络中最常用的多层前馈网络 ( BP网络 )及误差反向传播算法应用于化学和环境科学时要考虑的几个问题 :网络的输入与数据的归一化 ;隐含层数、隐含层节数和学习速率 ;训练集与监控集 ;网络误差 ;初始权重  相似文献
10.
根据非线性化现代神经元理论 ,以湖北省三、四级环境监测站为例 ,建立了神经网络定量测算人员编制的模型。研究确立了反向传播 BP模型在测算人员编制中的应用方法及技术路线。采用所建模型对某部门、某单位人员编制测算具有操作方便灵活 ,准确可靠以及实用性、通用性和动态可操作性特点。不仅可指导环保系统机构实现科学化定编、定员 ,同时对其他事业单位编制的规范化管理亦有参考意义。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号