首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   33篇
  国内免费   7篇
安全科学   8篇
废物处理   3篇
环保管理   65篇
综合类   49篇
基础理论   17篇
污染及防治   6篇
评价与监测   25篇
灾害及防治   3篇
  2023年   7篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   7篇
  2016年   11篇
  2015年   7篇
  2014年   12篇
  2013年   9篇
  2012年   6篇
  2011年   12篇
  2010年   8篇
  2009年   9篇
  2008年   8篇
  2007年   5篇
  2006年   7篇
  2005年   3篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1995年   2篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
1.
The Storm Water Management Model was used to simulate runoff and nutrient export from a low impact development (LID) watershed and a watershed using traditional runoff controls. Predictions were compared to observed values. Uncalibrated simulations underpredicted weekly runoff volume and average peak flow rates from the multiple subcatchment LID watershed by over 80%; the single subcatchment traditional watershed had better predictions. Saturated hydraulic conductivity, Manning's n for swales, and initial soil moisture deficit were sensitive parameters. After calibration, prediction of total weekly runoff volume for the LID and traditional watersheds improved to within 12 and 5% of observed values, respectively. For the validation period, predicted total weekly runoff volumes for the LID and traditional watersheds were within 6 and 2% of observed values, respectively. Water quality simulation was less successful, Nash–Sutcliffe coefficients >0.5 for both calibration and validation periods were only achieved for prediction of total nitrogen export from the LID watershed. Simulation of a 100‐year, 24‐h storm resulted in a runoff coefficient of 0.46 for the LID watershed and 0.59 for the traditional watershed. Results suggest either calibration is needed to improve predictions for LID watersheds or expanded look‐up tables for Green–Ampt infiltration parameter values that account for compaction of urban soil and antecedent conditions are needed.  相似文献   
2.
Remotely sensed vegetation indices correspond to canopy vigor and cover and have been successfully used to estimate groundwater evapotranspiration (ETg) over large spatial and temporal scales. However, these data do not provide information on depth to groundwater (dtgw) necessary for groundwater models (GWM) to calculate ETg. An iterative approach is provided that calibrates GWM to ETg derived from Landsat estimates of the Enhanced Vegetation Index (EVI). The approach is applied to different vegetation groups in Mason Valley, Nevada over an 11‐year time span. An uncertainty analysis is done to estimate the resulting mean and 90% confidence intervals in ETg to dtgw relationships to quantify errors associated with plant physiologic complexity, species variability, and parameter smoothing to the 100 m GWM‐grid, temporal variability in soil moisture and nonuniqueness in the solution. Additionally, a first‐order second moment analysis shows ETg to dtgw relationships are almost exclusively sensitive to estimated land surface, or maximum, ETg despite relatively large uncertainty in extinction depths and hydraulic conductivity. The EVI method of estimating ETg appears to bias ETg during years with exceptionally wet spring/summer conditions. Excluding these years improves model performance significantly but highlights the need to develop a methodology that accounts not only on quantity but timing of annual precipitation on phreatophyte greenness.  相似文献   
3.
Gridded precipitation datasets are becoming a convenient substitute for gauge measurements in hydrological modeling; however, these data have not been fully evaluated across a range of conditions. We compared four gridded datasets (Daily Surface Weather and Climatological Summaries [DAYMET], North American Land Data Assimilation System [NLDAS], Global Land Data Assimilation System [GLDAS], and Parameter‐elevation Regressions on Independent Slopes Model [PRISM]) as precipitation data sources and evaluated how they affected hydrologic model performance when compared with a gauged dataset, Global Historical Climatology Network‐Daily (GHCN‐D). Analyses were performed for the Delaware Watershed at Perry Lake in eastern Kansas. Precipitation indices for DAYMET and PRISM precipitation closely matched GHCN‐D, whereas NLDAS and GLDAS showed weaker correlations. We also used these precipitation data as input to the Soil and Water Assessment Tool (SWAT) model that confirmed similar trends in streamflow simulation. For stations with complete data, GHCN‐D based SWAT‐simulated streamflow variability better than gridded precipitation data. During low flow periods we found PRISM performed better, whereas both DAYMET and NLDAS performed better in high flow years. Our results demonstrate that combining gridded precipitation sources with gauge‐based measurements can improve hydrologic model performance, especially for extreme events.  相似文献   
4.
Worldwide studies show 80%–90% of all sediments eroded from watersheds is trapped within river networks such as reservoirs, ponds, and wetlands. To represent the impact of impoundments on sediment routing in watershed modeling, Soil and Water Assessment Tool (SWAT) developers recommend to model reservoirs, ponds, and wetlands using impoundment tools (ITs). This study evaluates performance of SWAT ITs in the modeling of a small, agricultural watershed dominated by lakes and wetlands. The study demonstrates how to incorporate impoundments into the SWAT model, and discusses and evaluates involved parameters. The study then recommends an appropriate calibration sequence, i.e., landscape parameters calibration, followed by pond/wetlands calibration, then channel parameter calibrations, and lastly, reservoir parameter calibration. Results of this study demonstrate not following SWAT recommendation regarding modeling water land use as an impoundment depreciates SWAT performance, and may lead to misplaced calibration efforts and model over‐calibration. Further, the chosen method to model impoundments’ outflow significantly impacts sediment loads in the watershed, while streamflow simulation is not very sensitive. This study also allowed calculation of mass accumulation rates in modeled impoundments where the annual mass accumulation rate in wetlands (2.3 T/ha/yr) was 39% higher than mass accumulation rate in reservoirs (1.4 T/ha/yr).  相似文献   
5.
本文介绍了一种基于系统辨识的高压衰减器的时域校准方法。依据系统辨识的基本原理,对高压衰减器建立输入、输出误差模型,通过测量衰减前后的时域波形,计算获得衰减器的传递函数,进而获得其修正系数。该方法可同时得到高压衰减器的幅频及相频特性,并可在高压校准条件下,准确反映衰减器的高压特性,为高压衰减器的时域校准提供了技术依据。  相似文献   
6.
Accurate discharge simulation is one of the most common objectives of hydrological modeling studies. However, a good simulation of discharge is not necessarily the result of a realistic simulation of hydrological processes within the catchment. We propose an evaluation framework that considers both discharge and water balance components as evaluation criteria for calibration of the Soil and Water Assessment Tool (SWAT). In this study, we integrated average annual values of surface runoff, groundwater flow, and evapotranspiration in the model evaluation procedure to constrain the selection of good model runs for the Little River Experimental Watershed in Georgia, United States. For evaluating water balance and discharge dynamics, the Nash‐Sutcliffe efficiency (NSE) and percent bias (PBIAS) were used. In addition, the ratio of root mean square error and standard deviation of measured data (RSR) was calculated for individual segments of the flow duration curve to identify the best model runs in terms of discharge magnitude. Our results indicate that good statistics for discharge do not guarantee realistic simulations of individual water balance components. Therefore, we recommend constraining the ranges of water balance components to achieve a more realistic simulation of the entire hydrological system, even if tradeoffs between good statistics for discharge simulations and reasonable amounts of the water balance components are unavoidable. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
7.
Watershed simulation models such as the Soil & Water Assessment Tool (SWAT) can be calibrated using “hard data” such as temporal streamflow observations; however, users may find upon examination of model outputs, that the calibrated models may not reflect actual watershed behavior. Thus, it is often advantageous to use “soft data” (i.e., qualitative knowledge such as expected denitrification rates that observed time series do not typically exist) to ensure that the calibrated model is representative of the real world. The primary objective of this study is to evaluate the efficacy of coupling SWAT‐Check (a post‐evaluation framework for SWAT outputs) and IPEAT‐SD (Integrated Parameter Estimation and Uncertainty Analysis Tool‐Soft & hard Data evaluation) to constrain the bounds of soft data during SWAT auto‐calibration. IPEAT‐SD integrates 59 soft data variables to ensure SWAT does not violate physical processes known to occur in watersheds. IPEAT‐SD was evaluated for two case studies where soft data such as denitrification rate, nitrate attributed from subsurface flow to total discharge ratio, and total sediment loading were used to conduct model calibration. Results indicated that SWAT model outputs may not satisfy reasonable soft data responses without providing pre‐defined bounds. IPEAT‐SD provides an efficient and rigorous framework for users to conduct future studies while considering both soft data and traditional hard information measures in watershed modeling.  相似文献   
8.
在声发射技术的应用中,传感器的工作频率和灵敏度对AE检测的结果具有决定性的作用,传感器的校准是AE定量研究的基础,也是声发射检测技术研究中的重要课题。根据二级校准的相关要求设计了三个不同声源的实验:落球、断铅和压断毛细玻璃管法。通过重复性实验,测量了不同大小的钢球从不同高度下落;不同粗细、硬度以及不同长度的铅芯的断裂;不同粗细的毛细玻璃管被压断产生的脉冲声源,分别比较以上三个实验在不同状态条件下产生的脉冲声源信号,分析其实时特征和频谱特征(峰值,上升时间),通过计算确定其不确定度和稳定度,总结优化操作方法,同时分析了实验误差。在此基础上得出最适合做声发射传感器灵敏度校准的脉冲声源,为声发射传感器校准中的参考声源提供性能评判的依据。  相似文献   
9.
It has been reported that the relative response factors of isotopically labeled standards and unlabeled standards of the same perfluorinated compounds could be different. Individual (100 ng mL?1) solutions of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were analyzed using high-performance liquid chromatography tandem mass-spectrometry under negative-ion electrospray to detect any impurities present down to 0.5%–0.1% relative to the major component. Purity of the standards ranged from approximately 86% to ≥ 97%. Standard solutions of unlabeled and isotopically labeled materials were analyzed to compare the response factors of isotopically labeled analytes versus their nonlabeled counterparts in three different matrices at equivalent concentrations: organic solvent (methanol), serum extract, and water present individually and concurrently. Not all labeled analytes have the same response factor as their nonlabeled complement, and in at least one case the matrix in which the standard is present may cause significant suppression of response. Standard solutions of electrochemical fluorination produced PFOA and PFOS were quantified under multiple reaction monitoring mode, using calibration curves prepared from standards consisting primarily of linear standards only. The use of linear only standards may cause under-prediction of concentrations, and that the working range of these standards may be limited.  相似文献   
10.
目前对水质模型进行参数率定通常利用计算机算法来实现,但由于水质模型日趋复杂的非线性结构往往会导致"异参同效"现象,无法通过单个似然度判断参数的取值是否能够取得真值.为避免这一情况,本文提出了一套基于GLUE法的多目标模型参数率定方法,并以WASP水质模型的应用为例,通过Sobol方法确定模型的敏感参数,并利用DO、CBOD、氨氮、硝态氮4项指标的似然函数对参数同时进行率定.结果表明,该方法既可以有效地避免因追求"过拟合"而造成模型参数取值不当,也可以减小模型参数的不确定性,为具有"异参同效"现象的复杂模型的参数率定工作提供了一个更为可靠的方法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号