首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16086篇
  免费   3409篇
  国内免费   2022篇
安全科学   1054篇
废物处理   285篇
环保管理   4362篇
综合类   10355篇
基础理论   1568篇
环境理论   1篇
污染及防治   1309篇
评价与监测   1476篇
社会与环境   878篇
灾害及防治   229篇
  2023年   313篇
  2022年   524篇
  2021年   551篇
  2020年   703篇
  2019年   654篇
  2018年   463篇
  2017年   586篇
  2016年   665篇
  2015年   809篇
  2014年   861篇
  2013年   1128篇
  2012年   1175篇
  2011年   1273篇
  2010年   900篇
  2009年   909篇
  2008年   716篇
  2007年   1111篇
  2006年   1048篇
  2005年   828篇
  2004年   719篇
  2003年   725篇
  2002年   641篇
  2001年   513篇
  2000年   488篇
  1999年   409篇
  1998年   307篇
  1997年   283篇
  1996年   252篇
  1995年   218篇
  1994年   195篇
  1993年   171篇
  1992年   130篇
  1991年   103篇
  1990年   82篇
  1989年   82篇
  1988年   75篇
  1987年   71篇
  1986年   46篇
  1985年   33篇
  1984年   47篇
  1983年   56篇
  1982年   59篇
  1981年   73篇
  1980年   79篇
  1979年   73篇
  1978年   52篇
  1977年   46篇
  1973年   44篇
  1972年   38篇
  1971年   58篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
研究基于郑州与福州两地区GNIP(1985—1992年)大气降水同位素资料,对其大气降水同位素的季节变化以及环境因子进行比较分析。结果表明,郑州地区较福州地区季节变化明显,且两地区与温度和降水量均呈现负相关关系;根据两地区大气降水线方程得出,福州地区大气降水线方程斜率和截距大于郑州地区;两地区的d-excess值夏季高,冬季低;福州地区受台风影响,两地区降水量差别较大导致降水量在决定两地区月加权平均d-excess值时,福州地区整体比郑州地区偏大;采用MeteoInfo软件,并利用由美国国家大气研究中心所提供的气象资料,对两地区气团轨迹进行后向模拟,比较分析得出:郑州地区在夏季大部分水汽来自南海,春季、秋季和冬季的水汽均来自北方大陆;福州地区在夏季的水汽全部水汽来自低纬度的海洋,而春季、秋季和冬季的水汽仅有少部份来自北方大陆。  相似文献   
2.
Water quality is a critical challenge in Asia in the context of growing industrialization, urbanization, and climate change. Nature-based solutions (NbS) could play an important role in reducing urban water pollution, while generating multiple co-benefits that could make cities more liveable and resilient. In this regard, a number of pilot and demonstration projects have been set up to explore their potential across cities in Asia. Their effectiveness and impacts, however, have not been adequately documented, thus how they can be sustained, replicated and up-scaled remain poorly understood. This study aims to contribute to addressing this challenge by co-developing an integrated assessment framework and employing it to understand how existing evaluations of NbS in the region can be improved. It focuses specifically on a set of nature-based solutions that have been employed for water treatment across six cities in Southeast Asia (two in each Sri Lanka, the Philippines, and Vietnam), namely, floating wetlands, constructed wetlands and maturation ponds. The study also suggests specific methodologies for capturing a set of core indicators considered relevant for assessing the effectiveness and capturing the multi-faceted impacts of the examined NbS.  相似文献   
3.
In this laboratory study different combinations of bed (sand, pebble gravel [gravel], and a mix of sand and gravel) and flow (typical and overtopping) were experimented with to investigate the impact of porous deflectors in flow diversity, water quality, and fish performance in prismatic open channels. Deflectors changed the gradually varied flow to a rapidly varied flow, as a sudden change in the water depth was observed at the deflectors, and this change was large for smooth beds. With the presence of gravel, the scouring near the downstream deflector was almost twice that of the sand bed, and with the scouring at its own upstream deflector, irrespective of whether the flow was typical or overtopping. This behavior was a result of sand mobilization due to shear stress and sand mobilization aided gravel transport. The mixed bed showed less gravel movement compared to the gravel-only bed. The percentage of sediment washed out was minor for all bed scenarios, indicating that sediment transport was local. Relative to the sand bed without deflectors (representing a typical urban canal), deflectors resulted in reduced and improved water quality (in terms of sediment load) for sand, and mixed bed, respectively. The fishes found refuge and were comfortable in the pool areas created by deflectors unlike in channels without deflectors where they showed exhaustion.  相似文献   
4.
Water quality index (WQI) models are generally used in hydrochemical studies to simplify complex data into single values to reflect the overall quality. In this study, deep groundwater quality in the Chittur and Palakkad Taluks of the Bharathapuzha river basin of Kerala, India, was assessed by employing the WQI method developed by the Canadian Council of Ministers of the Environment (CCME). The assessment of overall water quality is indispensable due to the specific characteristics of the study area, such as geography, climate, over-drafting, and prevalent agricultural practices. Forty representative samples were collected from the study area for monsoon (MON) and pre-monsoon (PRM) seasons. The results showed a general increase of contents from MON to PRM. The major cations were spread in the order Ca2+>Na+>Mg2+>K+ and the anions HCO3>Cl>CO32− based on their relative abundance. Among various parameters analysed, alkalinity and bicarbonate levels during MON were comparatively high, which is indicative of carbonate weathering, and 90% of the samples failed to meet the World Health Organization (WHO, 2017)/Bureau of Indian Standards (BIS, 2012) drinking water guidelines. The CCME WQI analysis revealed that nearly 50% of the samples during each season represented good and excellent categories. The samples in the poor category comprised 10% in MON and 15% in PRM. The overall WQI exhibited 15% of poor category samples as well. The spatial depiction of CCME WQI classes helped to expose zones of degraded quality in the centre to eastward parts. The spatial and temporal variations of CCME WQI classes and different physicochemical attributes indicated the influence of common factors attributing to the deep groundwater quality. The study also revealed inland salinity at Kolluparamba and Peruvamba stations, where agricultural activities were rampant with poor surface water irrigation.  相似文献   
5.
Waste accumulation is a grave concern and becoming a transboundary challenge for environment. During Covid-19 pandemic, diverse type of waste were collected due to different practices employed in order to fight back the transmission rate of the virus. Covid-19 was proved to be capricious catastrophe of this 20th century and even not completely eradicated from the world. The havoc created by this imperceptible quick witted, pleomorphic deadly virus can't be ignored. Though a number of vaccines have been developed by the scientists but there is a fear of getting this virus again in our life. Medical studies prove that immunity drinks will help to reduce its reoccurrences. Coconut water is widely used among all drinks available globally. Its massive consumption created an incalculable pile of green coconut shells around the different corners of the world. This practice generating enormous problem of space acquisition for the environment. Both the environment and public health will benefit from an evaluation of quantity of coconut waste that is being thrown and its potential to generate value added products. With this context, present article has been planned to study different aspects like, coconut waste generation, its biological properties and environmental hazards associated with its accumulation. Additionally, this review illustrates, green technologies for production of different value added products from coconut waste.  相似文献   
6.
The concern related to the drinking of reverse osmosis (RO) water containing low levels of minerals is growing day by day. This study involves the analysis of water samples from various drinking water sources in a rural site, Mirchpur village, an Indus Valley civilization site (grid location: 29° 18′ 42.3″ N, 76° 10′ 33.0″ E) of Hisar, India, along with the health survey of human subjects. The hydrochemistry of water collected from hand pumps, river canals, tube wells, submersibles, and the RO systems installed in various homes was explored for pH, EC, TH, TDS, turbidity, cations (Na+, Ca2+, Mg2+), anions (CO32−, HCO3, Cl, SO42−, NO3, F), and elements (Fe, Pb, Se) employing the ion chromatography, flame photometry, and ICP-AES techniques. Lead (Pb) and Selenium (Se) were detected in trace amounts (0.30–2.6 μg L−1; 0.10–4.1 μg L−1, respectively) in all the samples, including the samples collected from RO purifiers, but Iron (Fe) was not detected in RO samples even in trace amounts. The F-levels in hand pump water (HPW) and submersible water (SW) (1.9  and 1.7 mg L−1, respectively) and TDS levels in SW (3048 mg L−1) were found to be above WHO and BIS safe limits. TDS levels in the river canal (900 mg L−1), tube well (1104 mg L−1), hand pump (1170 mg L−1), and submersible samples (3048 mg L−1) were found significantly higher as compared to the RO personal water (ROPW; 216 mg L−1) and RO supply water (ROSW; 90 mg L−1). The collected epidemiological data reveals that 21%, 19%, 13%, and 12% of natives reported skin, kidney, hair fall, liver, and stomach issues, respectively, suspecting the crucial role of high TDS and fluoride levels in the area. This study also provides a comparison between the quality of RO and the direct supply water, along with correlation matrices for different parameters, which gives a rationale for the limitations of drinking direct supply water without any purification and RO water containing low mineral content.  相似文献   
7.
Fifty percent of the dry zone areas in Sri Lanka have fluoride levels above 1 ppm. This paper discusses the ground conditions and recommends an appropriate range of fluoride in drinking water which can support preventive practices for improving the oral health of children 8-years old and younger. In efforts to address the Chronic Kidney Disease of Unknown etiology (CKDU), water treatment to reduce contaminant level in potable water has been implemented. Such treatment would also remove fluoride and has resulted in potable water with various fluoride levels, depending on concentrations in the raw water. While it is important to reduce fluoride levels, it is important to have appropriate residual levels for prevention of dental caries. It needs, however, to be noted fluoride in excess can cause dental fluorosis. In Sri Lanka's dry zone areas increasing prevalence of dental fluorosis with decreasing prevalence of dental caries has been noted. Consumption of tea and powdered milk could increase total intake of fluoride. Fluoridated toothpaste, when used properly, may, however, result in negligible intake of fluoride. Sri Lanka's hot tropical climate which results in substantial intake of fluids reinforces the need to consider reduction in water fluoride. Consideration of local studies and international standards indicate fluoride levels should be in the range of 0.225–0.500 ppm. In the range of 0.225–0.500 ppm, the prevalence of dental fluorosis and caries was only 14% and 8%, respectively, in an endemic district. When fluoride levels are above 0.500 ppm, the issue of dental fluorosis shall need to be addressed. When levels are below 0.225 ppm, oral health care services shall need to be directed at preventing dental caries.  相似文献   
8.
The estimation of leachate quantities produced in landfills is necessary to dimension the treatment plants allowing to reduce the polluting load of these effluents and consequently avoid their negative impacts on the environment. Different leachate quantification methods were used in this study to assess the leachate volume produced at the Oum Azza landfill. The water balance method give comparable estimations of leachate production to the Ouled Berjal landfill ratio. The first method showed average values between 487 and 495 m3/day for 2015, 2018, and 2019, and at the same time, the second method gave values between 470 and 477 m3/day for the same years. In contrast, the World Bank ratio showed high values that vary between 2260 and 2295 m3/day for 2015, 2018, and 2019. The on-site data and the statistical analysis showed us that the World Bank ratio is not adapted for the estimation of the leachates produced in Oum Azza landfill, while the water balance and the ratio of Ouled Berjal landfill allowed to give comparable results to reality.  相似文献   
9.
This study investigated the water quality variation spanning 30 years (1986–2017) in 16 catchments of Hong Kong against different urbanization indices, namely, built area fraction; population; and product of population and built area fraction. Pearson correlations of three different periods of time (1988–1990, 1998–2000, and 2015–2017) indicated that water quality trends were dependent on the urbanization index. Total solids, nitrite-nitrogen, total phosphorus, electrical conductivity, dissolved oxygen, and flow rate had significant deteriorative trends (Pearson r > 0.5 and p < 0.05) with population and product of built area and population. Results also interpreted that built area fraction and product of built area and population were the worst and best indices that represented urbanization and/or its impacts, respectively. Mann-Kendall test for the entire 30 year period showed that water quality had improved with time with respect to certain water quality parameters (e.g., dissolved oxygen, ammoniacal nitrogen and total suspended solids). The results portrayed that although the urbanization of catchments had increased with time, the river water quality with respect to many parameters showed signs of improvement and the legislative measures implemented seemed to be effective in controlling pollution.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号