首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   920篇
  免费   97篇
  国内免费   158篇
安全科学   1篇
废物处理   2篇
环保管理   617篇
综合类   353篇
基础理论   66篇
污染及防治   12篇
评价与监测   55篇
社会与环境   62篇
灾害及防治   7篇
  2023年   11篇
  2022年   14篇
  2021年   27篇
  2020年   26篇
  2019年   34篇
  2018年   15篇
  2017年   34篇
  2016年   36篇
  2015年   52篇
  2014年   27篇
  2013年   63篇
  2012年   61篇
  2011年   51篇
  2010年   42篇
  2009年   52篇
  2008年   39篇
  2007年   43篇
  2006年   68篇
  2005年   48篇
  2004年   44篇
  2003年   54篇
  2002年   56篇
  2001年   29篇
  2000年   38篇
  1999年   26篇
  1998年   21篇
  1997年   19篇
  1996年   13篇
  1995年   16篇
  1994年   9篇
  1993年   7篇
  1992年   7篇
  1991年   6篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1986年   2篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   6篇
  1971年   4篇
  1970年   2篇
排序方式: 共有1175条查询结果,搜索用时 140 毫秒
1.
Despite long-standing knowledge of the benefits of riparian buffers for mitigating nonpoint source pollution, many streams are unprotected by buffers. Even landowners who understand ecological values of buffers mow riparian vegetation to the streambank. Do trends in rural riparian conditions reflect the development of riparian forest science? What motivates residential riparian management actions? Using high-resolution orthoimagery, we quantified riparian conditions and trends between 1998 and 2015 in the rural upper Little Tennessee River basin in Macon County, North Carolina and explored how landowners view riparian zone management and riparian restoration programs. Buffer composition in 2015 was as follows: no buffer (32.5%), narrow (19.3%), forested (26.7%), shrub (7.2%), and intermediate (7.0%). Relative to 1998, the greatest decrease occurred in the no buffer class (−17.7%, 46 km) and the largest increases occurred in the shrub (+72.5%, 20 km) and narrow (12.6%, 14 km) classes. Forested buffer marginally increased. Semi-structured interview data suggest that landowners prioritize recreational and scenic aspects of riparian buffers over ecological functions such as filtration and bank stabilization. Riparian restoration programs might be made more enticing to non-adopters if outreach language appealed to landowner priorities, design elements demonstrated intentional management, and program managers highlighted areas where ecological goals and landowner values align.  相似文献   
2.
Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.  相似文献   
3.
Eutrophication, harmful algal blooms, and human health impacts are critical environmental challenges resulting from excess nitrogen and phosphorus in surface waters. Yet we have limited information regarding how wetland characteristics mediate water quality across watershed scales. We developed a large, novel set of spatial variables characterizing hydrological flowpaths from wetlands to streams, that is, “wetland hydrological transport variables,” to explore how wetlands statistically explain the variability in total nitrogen (TN) and total phosphorus (TP) concentrations across the Upper Mississippi River Basin (UMRB) in the United States. We found that wetland flowpath variables improved landscape-to-aquatic nutrient multilinear regression models (from R2 = 0.89 to 0.91 for TN; R2 = 0.53 to 0.84 for TP) and provided insights into potential processes governing how wetlands influence watershed-scale TN and TP concentrations. Specifically, flowpath variables describing flow-attenuating environments, for example, subsurface transport compared to overland flowpaths, were related to lower TN and TP concentrations. Frequent hydrological connections from wetlands to streams were also linked to low TP concentrations, which likely suggests a nutrient source limitation in some areas of the UMRB. Consideration of wetland flowpaths could inform management and conservation activities designed to reduce nutrient export to downstream waters.  相似文献   
4.
A nutrient loss reduction strategy is necessary to guide the efforts of improving water quality downstream of an agricultural watershed. In this study, the effectiveness of two winter cover crops, namely cereal rye and annual ryegrass, is explored as a loss reduction strategy in a watershed that ultimately drains into a water supply reservoir. Using a coupled optimization-watershed model, optimal placements of the cover crops were identified that would result in the tradeoffs between nitrate-N losses reduction and adoption levels. Analysis of the 10%, 25%, 50%, and 75% adoption levels extracted from the optimal tradeoffs showed that the cover crop placements would provide annual nitrate-N loss reductions of 3.0%–3.7%, 7.8%–8.8%, 15%–17.5%, and 20.9%–24.3%, respectively. In addition, for the same adoption levels (i.e., 10%–75%), sediment (1.8%–17.7%), and total phosphorus losses (0.8%–8.6%) could be achieved. Results also indicate that implementing each cover crop on all croplands of the watershed could cause annual water yield reduction of at least 4.8%, with greater than 28% in the months of October and November. This could potentially be detrimental to the storage volume of the downstream reservoir, especially in drought years, if cover crops are adopted in most of the reservoir's drainage area. Evaluating water yield impacts, particularly in periods of low flows, is thus critical if cover crops are to be considered as best management practices in water supply watersheds.  相似文献   
5.
Gridded precipitation datasets are becoming a convenient substitute for gauge measurements in hydrological modeling; however, these data have not been fully evaluated across a range of conditions. We compared four gridded datasets (Daily Surface Weather and Climatological Summaries [DAYMET], North American Land Data Assimilation System [NLDAS], Global Land Data Assimilation System [GLDAS], and Parameter‐elevation Regressions on Independent Slopes Model [PRISM]) as precipitation data sources and evaluated how they affected hydrologic model performance when compared with a gauged dataset, Global Historical Climatology Network‐Daily (GHCN‐D). Analyses were performed for the Delaware Watershed at Perry Lake in eastern Kansas. Precipitation indices for DAYMET and PRISM precipitation closely matched GHCN‐D, whereas NLDAS and GLDAS showed weaker correlations. We also used these precipitation data as input to the Soil and Water Assessment Tool (SWAT) model that confirmed similar trends in streamflow simulation. For stations with complete data, GHCN‐D based SWAT‐simulated streamflow variability better than gridded precipitation data. During low flow periods we found PRISM performed better, whereas both DAYMET and NLDAS performed better in high flow years. Our results demonstrate that combining gridded precipitation sources with gauge‐based measurements can improve hydrologic model performance, especially for extreme events.  相似文献   
6.
Protected areas are an important part of broader landscapes that are often used to preserve biodiversity or natural features. Some argue that protected areas may also help ensure provision of ecosystem services. However, the effect of protection on ecosystem services and whether protection affects the provision of ecosystem services is known only for a few services in a few types of landscapes. We sought to fill this gap by investigating the effect of watershed protection status and land use and land cover on biodiversity and the provision of ecosystem services. We compared the ecosystem services provided in and around streams in 4 watershed types: International Union for Conservation of Nature category II protected forests, unprotected forests, unprotected forests with recent timber harvesting, and unprotected areas with agriculture. We surveyed 28 streams distributed across these watershed types in Quebec, Canada, to quantify provisioning of clean water, carbon storage, recreation, wild foods, habitat quality, and terrestrial and aquatic biodiversity richness and abundance. The quantity and quality of ecosystem services and biodiversity were generally higher in sites with intact forest—whether protected or not—relative to those embedded in production landscapes with forestry or agriculture. Clean-water provision, carbon storage, habitat quality, and tree diversity were significantly higher in and around streams surrounded by forest. Recreation, wild foods, and aquatic biodiversity did not vary among watershed types. Although some services can be provided by both protected and unprotected areas, protection status may help secure the continued supply of services sensitive to changes in land use or land cover. Our findings provide needed information about the ecosystem service and biodiversity trade-offs and synergies that result from developing a watershed or from protecting it.  相似文献   
7.
流域系统动力学模型的全耦合问题研究进展   总被引:1,自引:0,他引:1  
从系统分析的视角出发,对流域系统动力学建模过程、方法进行总结。综述了国内外系统动力学模型(简称SD模型)在社会经济发展与流域水资源承载力、流域水环境承载和流域水生态承载力耦合关系的研究。从简单的零维模型发展到复杂的社会经济综合模型和OO-SD模型(即Objective-Optimization SD模型),国内SD模型耦合关系研究主要集中在叶尔羌河、洱海、滇池等流域,SD模型在监测、数据共享和模型结构、参数选取和不确定性分析等方面还存在不足,有待改进。  相似文献   
8.
基于水质协议的跨界流域生态补偿标准研究   总被引:6,自引:3,他引:3  
在完全信息的情况下,分析了如何设计跨界流域生态补偿标准,并讨论了跨界流域生态补偿政策可能存在的时间一致性问题.基于斯坦伯格博弈框架下的分析结果表明,若考虑跨界流域生态补偿标准与环境损害函数是线性的,则跨界流域生态补偿政策是具有时间一致性的环境经济政策,这是由于该政策在设计时,其补偿标准要么仅与环境损害成本有关,或直接与流域内各区域的污染物削减费用有关.在这两种情况下,流域内各区域在执行该政策的时候,没有相应的战略去刺激流域内各区域刻意改变其自身的污染物削减费用函数,从而影响到未来的跨界流域生态补偿政策的实施.随后,利用该方法针对COD指标,模拟了2008年河南省贾鲁河流域跨界流域生态补偿政策,结果发现,当生态补偿标准设置在2714.13元.t-1时,能够实现跨界流域生态补偿政策的目标.在这种情况下,该流域COD排放总量达到了流域COD年允许排放总量的要求;且相比跨界流域生态补偿政策实施前,强制要求流域内各区域单独削减COD达到断面年允许排放量的情况,各区域的COD削减费用均有所下降.  相似文献   
9.
2008年滇池流域水环境承载力评估   总被引:1,自引:0,他引:1  
自20世纪70年代以来,随着经济迅猛发展以及人口的快速增长,滇池流域的水环境问题日益突出.为深入了解造成当前水环境问题的根本原因,以水资源承载力和水环境承载力作为广义水环境承载力的基础进行综合分析,并且利用水资源供需平衡和水资源承载压力度反映水资源承载力,利用水环境承载率反映水环境承载力.结果表明:滇池流域TN和TP的水环境承载率分别为0.677和0.355,处于超载状态,是导致滇池流域严重富营养化的主要原因;水资源承载压力度为14.5,远大于供需平衡,同样也处于超载状态,实际水资源盈亏为-59 037×104 m3,缺失严重.因此,滇池流域水质型和资源型缺水问题共同存在.  相似文献   
10.
岩石风化对三峡库区农业小流域水化学特征的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
通过对三峡库区典型农业小流域-重庆涪陵王家沟小流域为期一年的水质系统监测,明确了流域主要离子组成,分析了小流域的水化学特征和主要离子来源.结果表明,该流域水化学类型为Cl-—Ca2+型;大多数离子的含量随采样点、季节、水体类型的不同而有显著性差异;Gibbs图、阴阳离子三角图分析结果表明,该流域水体离子组成受岩石风化的影响比较显著,且阴离子可能主要来自于岩盐溶解和碳酸盐的风化,而岩盐溶解也是控制流域阳离子的主要机制,硅酸盐矿物的风化侵蚀作用也存在一定影响;主成分分析得出对该流域水体离子组成影响最大的可能是碳酸盐(其中H2CO3风化碳酸盐岩过程比H2SO4风化作用更为显著),其次是岩盐、硅酸盐,农业活动和居民生活也有一定影响.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号