首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
安全科学   1篇
  2015年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
在煤矿瓦斯灾害中,煤矿瓦斯突出是导致瓦斯重特大事故的主要原因之一。目前常用的基于反向传播(BP)神经网络和遗传算法-Elman神经网络(GA-ENN)耦合算法等建立瓦斯涌出量预测模型的预测方法在收敛性和精度上均存在一定的缺陷。提出了一种利用混沌免疫遗传优化算法(CIGOA)对Elman神经网络进行改进的新型智能优化算法来增强粒子的活性,提高其局部搜索能力和全局优化能力,克服了遗传算法(GA)的固有缺陷。对煤矿现场跟踪实测后进行仿真分析,结果表明:运用提出的CIGOA-ENN预测模型预测的最大相对误差为4.47%,最小相对误差为1.12%,平均相对误差为2.27%,明显小于BP神经网络和GA-ENN等预测模型的预测结果,表明CIGOA-ENN预测模型的输出结果更精确,对瓦斯涌出量预测系统的辨识误差更小,性能更优越。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号