首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   3篇
  2012年   1篇
  2007年   1篇
  1988年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The present study was undertaken to elucidate the way in which the Swan Estuary in south-western Australia is used by the common blowfish Torquigener pleurogramma, a representative of the abundant and widely distributed family Tetraodontidae. T. pleurogramm were collected by beach seine and otter trawl from the Swan Estuary between February 1977 and December 1980 and between May 1984 and February 1986. While T. pleurogramma feeds on a wide variety of organisms in the estuary, the main components of its diet are polychaetes and amphipods for fish <130 mm and bivalve molluscs for larger fish. Numbers of blowfish were inversely correlated with water depth, with densities on the banks (water depth <1.5 m) sometimes reaching 5 fish m-2, and tended to be greater at night than during the day. The density of T. pleurogramma in the shallows was positively correlated with salinity and inversely correlated with distance from the estuary mouth. Numbers increased greatly in the latter half of 1980 and 1985 as a result of the recruitment of large numbers of the 0+ age class (i.e., fish in their first year of life). Blowfish were represented by seven age classes in the estuary and attained a maximum size of 230 mm (220 g). By the end of their first and second years of life, fish had reached approximately 90 mm (14 g) and 125 mm (39 g), respectively. Sexual maturity was generally not reached until the end of the second year of life. The presence of higher gonadosomatic indices and more mature gonads in fish collected just outside than within the estuary indicate that T. pleurogramma leaves the estuary before spawning. Comparisons between lengthfrequency data, allied with information on the prevalence and intensity of gill parasites, indicate that assemblages in estuarine and neighbouring inshore waters remain distinct for many months and that growth within the estuary is faster than in inshore marine environments.  相似文献   
2.
We investigated spatial patterns of synchrony among coral reef fish populations and environmental variables over an eight-year period on the Great Barrier Reef, Australia. Our aims were to determine the spatial scale of intra- and interspecific synchrony of fluctuations in abundance of nine damselfish species (genus Pomacentrus) and assess whether environmental factors could have influenced population synchrony. All species showed intraspecific synchrony among populations on reefs separated by < or =100 km, and interspecific synchrony was also common at this scale. At greater spatial scales, only four species showed intraspecific synchrony, over distances ranging from 100-300 km to 500-800 km, and no cases of interspecific synchrony were recorded. The two mechanisms most likely to cause population synchrony are dispersal and environmental forcing through regionally correlated climate (the Moran effect). Dispersal may have influenced population synchrony over distances up to 100 km as this is the expected spatial range for ecologically significant reef fish dispersal. Environmental factors are also likely to have synchronized population fluctuations via the Moran effect for three reasons: (1) dispersal could not have caused interspecific synchrony that was common over distances < or =100 km because dispersal cannot link populations of different species, (2) variations in both sea surface temperature and wind speed were synchronized over greater spatial scales (>800 km) than fluctuations in damselfish abundance (< or =800 km) and were correlated with an index of global climate variability, the El Ni?o-Southern Oscillation (ENSO), and (3) synchronous population fluctuations of most damselfish species were correlated with ENSO; large population increases often followed ENSO events. We recorded regional variations in the strength of population synchrony that we suspect are due to spatial differences in geophysical, oceanographic, and population characteristics, which act to dilute or enhance the effects of synchronizing mechanisms. We conclude that synchrony is common among Pomacentrus populations separated by tens of kilometers but less prevalent at greater spatial scales, and that environmental variation linked to global climate is likely to be a driving force behind damselfish population synchrony at all spatial scales on the Great Barrier Reef.  相似文献   
3.
Territorial damselfishes that manipulate (“farm”) the algae in their territories can have a marked effect on benthic community structure and may influence coral recovery following disturbances. Despite the numerical dominance of farming species on many reefs, the importance of their grazing activities is often overlooked, with most studies only examining their roles over restricted spatial and temporal scales. We used the results of field surveys covering 9.5° of latitude of the Great Barrier Reef to describe the distribution, abundance and temporal dynamics of farmer communities. Redundancy analysis revealed unique subregional assemblages of farming species that were shaped by the combined effects of shelf position and, to a lesser extent, by latitude. These spatial patterns were largely stable through time, except when major disturbances altered the benthic community. Such disturbances affected the functional guilds of farmers in different ways. Since different guilds of farmers modify benthic community structure and affect survival of juvenile corals in different ways, these results have important implications for coral recovery following disturbances.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号