首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
废物处理   3篇
  2020年   1篇
  2019年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
以模拟烟气为气源,去离子水为水源,通过微纳米气泡发生器形成微纳米气液分散体系,吸收模拟烟气中的NO,考察了多种因素对脱硝率(η)和气相体积总传质系数(KGa)的影响,分析了微纳米气液分散体系吸收NO的反应机理。结果表明:η和KGa随着进气NO体积分数和十二烷基苯磺酸钠(SDBS)质量浓度的提高而下降;随着吸收液初始pH的提高先降低后升高;随着进气O_2体积分数的增大而提高;随着吸收液温度的升高先提高后降低;控制进气NO体积分数为0.06%时,在吸收液初始pH为2.0、吸收剂为去离子水、吸收液温度为25℃、进气O_2体积分数为10%的最佳条件下,脱硝率可达81.0%。微纳米气液分散体系是通过产生羟基自由基从而对NO进行氧化吸收的。  相似文献   
2.
利用过渡金属离子Fe^2+和Mn^2+作为催化剂,耦合微纳米气泡催化氧化吸收HCHO,研究了各种反应参数变化对吸收效果的影响,并借助GC-MS技术探究了微纳米气泡氧化吸收HCHO的机理。实验结果表明:HCHO吸收率随着吸收液pH、NaCl浓度、SDS浓度及过渡金属离子浓度的增加均呈现出先升高后降低的变化规律,低浓度的NaCl有助于HCHO的吸收;在进气HCHO质量浓度0.4 mg/m^3、循环9次的设定工况下,最佳工艺条件为吸收液pH 4、NaCl质量浓度0.1 g/L、SDS质量浓度7 mg/L、Fe^2+/Mn^2+浓度2.0 mmol/L;在此条件下,Fe^2+和Mn^2+催化体系的HCHO吸收率分别达82.6%和90.4%。GC-MS分析结果显示,微纳米气泡氧化吸收HCHO的主要有机产物为乙二醇。  相似文献   
3.
采用固体废物锍铁化合物(记为FexS)作为催化剂,耦合微纳米气泡催化氧化去除烟气中NO,考察了不同工艺条件下的去除效果,运用XRD、SEM和EDS技术对反应前后的FexS进行了表征,探究了反应机理。实验结果表明,在FexS粒径为0.038~0.053 mm、FexS投加量为5 g、NaCl质量浓度为0.3 g/L、溶液pH为5、进气NO质量浓度为6.7 mg/L的最佳工艺条件下,NO去除率高达95.3%。表征结果显示,反应后的FexS较反应前没有明显的物相变化,FexS表面的微量物质催化了NO的氧化去除。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号