首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
废物处理   1篇
污染及防治   4篇
  2022年   1篇
  2013年   2篇
  2004年   1篇
  1997年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
This work investigates arsenic mobility, bioavailability and toxicity in marine port sediments using chemical sequential extraction and laboratory toxicity tests. Sediment samples were collected from two different Mediterranean ports, one highly polluted with arsenic and other inorganic and organic pollutants (Estaque port (EST)), and the other one, less polluted, with a low arsenic content (Saint Mandrier port (SM)). Arsenic distribution in the solid phase was studied using a sequential extraction procedure specifically developed for appraising arsenic mobility in sediments. Toxicity assessment was performed on sediment elutriates, solid phases and aqueous arsenic species as single substance using the embryo-toxicity test on oyster larvae (Crassostrea gigas) and the Microtox test with Vibrio fischeri. Toxicity results showed that all sediment samples presented acute and sub-chronic toxic effects on oyster larvae and bacteria, respectively. The Microtox solid phase test allow to discriminate As-contaminated samples from the less contaminated ones, suggesting that toxicity of whole sediment samples is related to arsenic content. Toxicity of dissolved arsenic species as single substance showed that Vibrio fischeri and oyster larvae are most sensitive to As(V) than As(III). The distribution coefficient (Kd) of arsenic in sediment samples was estimated using results obtained in chemical sequential extractions. The Kd value is greater in SM (450 L kg?1) than in EST (55 L kg?1), indicating that arsenic availability is higher for the most toxic sediment sample (Estaque port). This study demonstrates that arsenic speciation play an important role on arsenic mobility and its bioavailability in marine port sediments.  相似文献   
2.
In the present study, controlled laboratory column experiments were conducted to understand the biogeochemical changes during the microbial sulfate reduction. Sulfur and oxygen isotopes of sulfate were followed during sulfate reduction in zero valent iron incubated flow through columns at a constant temperature of 20 ± 1 °C for 90 d. Sulfur isotope signatures show considerable variation during biological sulfate reduction in our columns in comparison to abiotic columns where no changes were observed. The magnitude of the enrichment in δ34S values ranged from 9.4‰ to 10.3‰ compared to initial value of 2.3‰, having total fractionation δS between biotic and abiotic columns as much as 6.1‰. Sulfur isotope fractionation was directly proportional to the sulfate reduction rates in the columns. Oxygen isotopes in this experiment seem less sensitive to microbial activities and more likely to be influenced by isotopic exchange with ambient water. A linear relationship is observed between δ34S and δ18O in biotic conditions and we also highlight a good relationship between δ34S and sulfate reduction rate in biotic columns.  相似文献   
3.
Environmental Science and Pollution Research - Owing to their roles in the arsenic (As) biogeochemical cycle, microorganisms and plants offer significant potential for developing...  相似文献   
4.
Water, Air, &; Soil Pollution: Focus - A biological method for the reduction Cr(VI), using sulphate-reducing bacteria (SRB), was tested in 2-L then 20-L fixed-bed reactors, with H2 as a low-cost...  相似文献   
5.
The treatment of a cyanidation effluent containing thiocyanate, free cyanide, and complexed cyanide was continuously performed for a period of 6 months. Activated carbon, pozzolana, and a mixture of pumice stone and zeolite were tested as supports in fixed bed reactors. Activated carbon adsorbed the different forms of cyanide. In contrast, the other supports did not remove any pollutants from the effluent during an adsorption experiment. All supports successfully allowed fixation of bacteria. More than 90% of the thiocyanate was biologically decomposed into NH4+, CO2 and SO4(2-), even when increasing the feed flow-rate and the pollutant concentrations. Free and complexed cyanides were eliminated, probably through a combination of precipitation and biological degradation. The oxidation of ammonium into nitrate was only performed by the activated carbon-containing column and with the more diluted feeding. The nitrification process was inhibited in all reactors when the cyanide concentrations and feed flow-rates were increased.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号