首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
废物处理   5篇
评价与监测   1篇
  2022年   1篇
  2013年   2篇
  2012年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The survival of aqueous suspensions of Penicillium chrysogenum, Stachybotrys chartarum, Aspergillus versicolor, and Cladosporium cladosporioides spores was evaluated using various combinations of hydrogen peroxide and Fe2+ as catalyst. Spore concentrations of 106–107 colony forming units per milliliter (CFU/mL) were suspended in water and treated with initial hydrogen peroxide and iron concentrations ranging from 0.05 to 10 percent and 100 to 200 ppm, respectively. After four hours of reaction time, samples were plated on agar plates, and the viable fraction of spores was determined by the number of colonies formed. Hydrogen peroxide concentrations above 50,000 ppm resulted in greater than 6‐log10 reduction of viable spores for both catalyzed and noncatalyzed reactions. Iron had a strong catalytic effect when added to solutions with hydrogen peroxide concentration above 5,000 ppm and resulted in two to three orders of magnitude greater reduction compared to hydrogen peroxide alone. Additional samples taken after 24 hours of reaction time showed that the effect of the addition of 100 and 200 ppm of Fe2+ catalyst was mostly kinetic, and noncatalyzed hydrogen peroxide had sporicidal effects similar to catalyzed hydrogen peroxide. This study identified initial reagent concentrations of hydrogen peroxide and Fe2+ that accomplish a 6‐log10 reduction of viable mold spores within reaction times of 4 and 24 hours. © 2007 Wiley Periodicals, Inc.  相似文献   
2.
During the production of thermonuclear fusion weapons at the Y‐12 National Security Complex (Y‐12 NSC) in Oak Ridge, Tennessee, between 1950 and 1963, the regional environment was extensively contaminated by volatile organic compounds (VOCs). Old Salvage Yard (OSY) on the western side of the site has been characterized as the major source of VOCs. In order to analyze the long‐term fate and transport of chlorinated VOC sources, an integrated surface and subsurface flow and transport model was developed for the Y‐12 NSC using the hydrodynamic and transport numerical package MIKE‐SHE. The model was developed considering the recent hydrogeological investigations on preferential flow and transport pathways at the site. The model was calibrated using the recorded groundwater flow and water‐quality data. The modeling simulated migration of the VOC plume for the next 100 years. Considering a range of hydrogeological and transport parameters, uncertainty of the results is discussed. The modeling predicted that tetrachloroethene, trichloroethene, and 1,2‐dichloroethene may exceed human health–related risk levels for the next 10 to 20 years. However, the contamination is unlikely to migrate to surface water under the current hydrogeological conditions and will decay below acceptable risk levels within approximately 20 years. © 2013 Wiley Periodicals, Inc.  相似文献   
3.
The use of assimilation tools for satellite validation requires true estimates of the accuracy of the reference data. Since its inception, the Network for Detection of Stratospheric Change (NDSC) has provided systematic lidar measurements of ozone and temperature at several places around the world that are well adapted for satellite validations. Regular exercises have been organised to ensure the data quality at each individual site. These exercises can be separated into three categories: large scale intercomparisons using multiple instruments, including a mobile lidar; using satellite observations as a geographic transfer standards to compare measurements at different sites; and comparative investigations of the analysis software. NDSC is a research network, so each system has its own history, design, and analysis, and has participated differently in validation campaigns. There are still some technological differences that may explain different accuracies. However, the comparison campaigns performed over the last decade have always proved to be very helpful in improving the measurements. To date, more efforts have been devoted to characterising ozone measurements than to temperature observations. The synthesis of the published works shows that the network can potentially be considered as homogeneous within +/-2% between 20-35 km for ozone and +/-1 K between 35-60 km for temperature. Outside this altitude range, larger biases are reported and more efforts are required. In the lower stratosphere, Raman channels seem to improve comparisons but such capabilities were not systematically compared. At the top of the profiles, more investigations on analysis methodologies are still probably needed. SAGE II and GOMOS appear to be excellent tools for future ozone lidar validations but need to be better coordinated and take more advantage of assimilation tools. Also, temperature validations face major difficulties caused by atmospheric tides and therefore require intercomparisons with the mobile systems, at all sites.  相似文献   
4.
5.
As a result of nuclear processing activities started back in the 1950s, the environment in the vicinity of the Y‐12 National Security Complex (Y‐12 NSC) in Oak Ridge, Tennessee, and surrounding watersheds has been contaminated by nearly 1,000 tons of elementary mercury. To comply with the state and federal surface water quality standards, a significant reduction in mercury concentration to parts‐per‐trillion levels has been proposed. In order to analyze the mercury cycle in the environment and provide forecasting capabilities for the flow and transport of mercury within the Upper East Fork Poplar Creek (UEFPC) watershed, an integrated surface and subsurface flow and transport model has been developed using the hydrodynamic and transport numerical package, MIKE, developed by the Danish Hydraulic Institute. The model has been constructed and calibrated using an extensive collection of historical records (i.e., hydrological data, and mercury concentration measurements in groundwater, soil, and sediment) obtained from the Oak Ridge Environmental Information System database. Daily fluctuations in stream flow, as a result of scattered rainfall, flooding, and flow augmentation, resuspend the contaminated streambed sediments and/or erode the polluted streambank soil and provide a secondary source of mercury to the creek. In order to investigate the significance of sediment‐mercury interactions on the fate and transport of mercury within the UEFPC study domain, simulations were performed for two different cases (i.e., with and without consideration of sediment‐mercury interactions). Computed total suspended solids and mercury concentrations at the integration point of the creek are compared with the corresponding historical records in both cases. As confirmed by the numerical simulations, a substantial portion of the mercury detected in the river is likely in the form of sediment particle–bound mercury (i.e., mercury particulates). © 2012 Wiley Periodicals, Inc.  相似文献   
6.
Journal of Material Cycles and Waste Management - Fluff is a shredder waste made up mostly of polymeric material generated in semi-integrated steel manufacturing plants, which is usually disposed...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号