首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
废物处理   4篇
环保管理   9篇
污染及防治   1篇
社会与环境   2篇
  2022年   1篇
  2013年   1篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2006年   1篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
排序方式: 共有16条查询结果,搜索用时 38 毫秒
1.
Micro-X-ray fluorescence (micro-XRF) microprobe analysis and micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy were employed to identify Fe and Mn phases and their association with selected metals in two biosolids (limed composted [LC] and Nu-Earth) before and after treatment to remove organic carbon (OC). Spatial correlations derived from elemental mapping of XRF images showed strong correlations between Fe and Cd, Cr, Pb, or Zn (r2= 0.65-0.92) before and after removal of most of the OC. The strong correlation between Fe and Cu that was present in intact samples disappeared after OC removal, suggesting that Cu was associated with OC coatings that may have been present on Fe compounds. Except for Fe and Cr, the spatial correlations of metals with Mn were improved after treatment to remove OC, indicating that the treatment may have altered more than the OC in the system. The Fe micro-XANES spectra of the intact biosolids sample showed that every point had varying mixtures of Fe(II and III) species and no two points were identical. The lack of uniformity in Fe species in the biosolids sample illustrates the complexity of the materials and the difficulty of studying biosolids using conventional analytical tools or chemical extraction techniques. Still, these microscopic observations provide independent information supporting the previous laboratory and field hypothesis that Fe compounds play a major role in retention of environmentally important trace elements in biosolids. This could be due to co-precipitation of the metals with Fe, adsorption of metals by Fe compounds, or a combination of both mechanisms.  相似文献   
2.
Understanding the molecular-scale complexities and interplay of chemical and biological processes of contaminants at solid, liquid, and gas interfaces is a fundamental and crucial element to enhance our understanding of anthropogenic environmental impacts. The ability to describe the complexity of environmental biogeochemical reaction mechanisms relies on our analytical ability through the application and developmemnt of advanced spectroscopic techniques. Accompanying this introductory article are nine papers that either review advanced in situ spectroscopic methods or present original research utilizing these techniques. This collection of articles summarizes the challenges facing environmental biogeochemistry, highlights the recent advances and scientific gaps, and provides an outlook into future research that may benefit from the use of in situ spectroscopic approaches. The use of synchrotron-based techniques and other methods are discussed in detail, as is the importance to integrate multiple analytical approaches to confirm results of complementary procedures or to fill data gaps. We also argue that future direction in research will be driven, in addition to recent analytical developments, by emerging factors such as the need for risk assessment of new materials (i.e., nanotechnologies) and the realization that biogeochemical processes need to be investigated in situ under environmentally relevant conditions.  相似文献   
3.
This paper presents the results of a laboratory investigation to determine the geotechnical properties of fresh municipal solid waste (MSW) collected from the working phase of Orchard Hills Landfill located in Davis Junction (Illinois, USA). Laboratory testing was conducted on shredded MSW to determine the compaction, hydraulic conductivity, compressibility, and shear strength properties at in-situ gravimetric moisture content of 44%. In addition, the effect of increased moisture content during leachate recirculation on compressibility and shear strength of MSW was also investigated by testing samples with variable gravimetric moisture contents ranging from 44% to 100%. Based on Standard Proctor tests, a maximum dry density of 420 kg/m(3) was observed at 70% optimum moisture content. The hydraulic conductivity varied in a wide range of 10(-8)-10(-4)m/s and decreased with increase in dry density. Compression ratio values varied in a close range of 0.24-0.33 with no specific trend with the increase in moisture content. Based on direct shear tests, drained cohesion varied from 31 to 64 kPa and the drained friction angle ranged from 26 to 30 degrees. Neither cohesion nor friction angle demonstrated any correlation with the moisture content, within the range of moisture contents tested. The consolidated undrained triaxial shear tests on saturated MSW showed the total strength parameters (c and phi) to be 32 kPa and 12 degrees, and the effective strength parameters (c' and phi') to be 38 kPa and 16 degrees. The angle of friction (phi) decreased and cohesion (c) value increased with the increase in strain. The effective cohesion (c') increased with increase in strain; however, the effective angle of friction (phi') decreased first and then increased with the increase in strain. Such strain-dependent shear strength properties should be properly accounted in the stability analysis of bioreactor landfills.  相似文献   
4.
Methane biofiltration (MBF) is a novel low-cost technique for reducing low volume point source emissions of methane (CH4). MBF uses a granular medium, such as soil or compost, to support the growth of methanotrophic bacteria responsible for converting CH4 to carbon dioxide (CO2) and water (H2O). A field research program was undertaken to evaluate the potential to treat low volume point source engineered CH4 emissions using an MBF at a natural gas monitoring station. A new comprehensive three-dimensional numerical model was developed incorporating advection-diffusive flow of gas, biological reactions and heat and moisture flow. The one-dimensional version of this model was used as a guiding tool for designing and operating the MBF. The long-term monitoring results of the field MBF are also presented. The field MBF operated with no control of precipitation, evaporation, and temperature, provided more than 80% of CH4 oxidation throughout spring, summer, and fall seasons. The numerical model was able to predict the CH4 oxidation behavior of the field MBF with high accuracy. The numerical model simulations are presented for estimating CH4 oxidation efficiencies under various operating conditions, including different filter bed depths and CH4 flux rates. The field observations as well as numerical model simulations indicated that the long-term performance of MBFs is strongly dependent on environmental factors, such as ambient temperature and precipitation.  相似文献   
5.
Reducing conditions in soils can have significant influences on the availability of nutrient and toxic metals, through their remobilization, their release through reductive dissolution of oxide phases, and from the formation of precipitates. In the literature, contrasting results are reported on the effects of temporary waterlogging conditions on the availability of metals. In the present study, changes in the "labile" or "potentially available" pool of copper (Cu) in soils as a consequence of up to three intermittent soil submergence cycles was investigated using isotopic dilution. The soils (an Oxisol and an Inceprisol) selected were amended in the field with both biosolids-Cu and salt-Cu. Intermittent soil submergence was found to have a significant effect on the lability of Cu in soils, with E(total) values generally increasing in all the treatments with the different submergence cycles, the highest lability of Cu observed in the Cu-salt treatment. The presence of nonexchangeable colloidal forms of Cu, influenced by treatments and submergence cycles, was also reported.  相似文献   
6.
Many mathematical programs have been developed over the past 50 years to aid agricultural experts and other farming decision-makers. The application of these mathematical programs has seen limited success because their development has focused on mathematical theory as opposed to the requirements needed for application. This paper describes the development of two mathematical programs that were designed to integrate with a visualization simulation that aids a nontraditional group of agricultural decision-makers: illiterate Sri Lankan subsistence farmers. The simulation was designed to help these illiterate farmers make business decisions about their crop selection choices which, in turn, will help them develop their business plans required for obtaining bank micro-loans. This paper’s focus is on the use of linear programming as a potential tool to demonstrate the benefits of crop diversification and rotation to the farmer based on various available crop types. It also highlights the issues using such an approach.  相似文献   
7.
According to some non-scholarly reports, Kalametiya lagoon (dry zone of southern Sri Lanka, formerly 8.9 km2, now 7.5 km2) had been a moderately or high salinity water body and a very important centre of prawn fishery until the late 1960s. Most of the lagoon area had remained open water until then. An upstream irrigation project, the Udawalawa irrigation scheme, came into operation in 1967, increasing the freshwater inflow to the lagoon. The flora, fauna and water quality of the lagoon was reported to have changed since then.The lagoon now is a shallow coastal water body with low salinity water. More than 75% of the lagoon is covered by freshwater species or mangrove species characteristic for water with a low salinity: Eichhornia crassipes, Typha latifolia resp. Sonneratia caseolaris. There is actually no commercially important fishery in the lagoon.The present study was carried out to assess scientifically the said changes in the vegetation within a GIS, using aerial photographs taken in 1956 and 1994 and IRS IC, PAN+LISS III satellite images of 1997 in combination with ground surveys and information from a questionnaire-based survey.It appeared from this work that the aerial cover by Sonneratia caseolaris has increased by more than 30 times over the period from 1956 to the recent dates. Also, the lagoon area with open water has been drastically reduced during the same period as a result of spreading of freshwater and low salinity plant species. The results strongly suggest that the locally reported changes (fisheries decline, water salinity decrease) can be corroborated by the observed profound changes in plant cover and that upstream water works may have had strong impacts on this ecosystem, thus causing these changes.This study couples data obtained from retrospective aerial photograph series, from spaceborne imaging, from actual ground surveys and from questionnaires amongst elderly people to reconstruct decadal environmental change, thus attempting to fill the gap of lacking historical environmental data.  相似文献   
8.
In this methodological study, the applicability of aerial photographs for monitoring mangrove vegetation dynamics at high resolution was investigated. Vegetation maps of three mangrove forests in Sri Lanka (Galle, Rekawa and Pambala) were produced based on visual analysis of aerial photographs. The visual analysis was aided by applying an interpretation key constructed during a first fieldwork mission. Image attributes used for the identification of individual trees included: gray values, texture, form and size of the crowns and the presence or absence of a shaded side. For the identification of species assemblages, the vegetation structure (i.e. the distribution of individual trees) appeared to be an important attribute. The accuracy and reliability of the vegetation maps were investigated during a second fieldwork mission. The aerial photographs proved to be very useful for the production of genus-based vegetation maps. The error analysis showed that density estimations (quantitative identification) based on aerial photography was not sufficiently accurate for the objectives of the study, but that the overall identification of vegetation assemblages (qualitative identification) coincided most satisfactory with the ground-truth data. In addition to the applicability of aerial photography in monitoring mangroves, the importance of aerial photography in the management of the mangrove ecosystem is clearly highlighted.  相似文献   
9.
This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were prepared based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16–40 kPa for degraded MSW and the friction angle decreased from 35° for fresh MSW to 28° for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1° to 9°, respectively, while the effective strength parameters, cohesion and friction angle varied from 18 to 56 kPa and from 1° to 11°, respectively. Similar to direct shear test results, as the waste degrades an increase in cohesion and slight decrease in friction angle was observed. Decreased friction angle and increased cohesion with increased degradation is believed to be due to the highly cohesive nature of the synthetic MSW. Variation of synthetic MSW properties from this study also suggests that significant changes in geotechnical properties of MSW can occur due to enhanced degradation induced by leachate recirculation.  相似文献   
10.
The speciation and distribution of Co in soils is poorly understood. This study was conducted using x-ray absorption spectroscopy (XAS) techniques to examine the influence of soluble cobalt in the +2 oxidation state (Co[II]) aging, submergence-dried cycling, and the presence of in vivo rice roots on the speciation and distribution of added Co(II) in soils. In the aging and submerged-dried cycling studies, Co was found to be associated with Mn oxide fraction (23 to 100% of total Co) and Fe oxide fractions (0 to 77% of total Co) of the soils as either Co(II) species or a mixed Co(II), and Co in the +3 oxidation state (Co[III]) species. The surface speciation of Co in the Mn oxide fraction suggests an innersphere complex was present and the speciation of Co in the Fe oxide fraction was an innersphere surface complex. The in vivo root box experiments showed similar Co speciation in the Mn oxide fraction (13 to 76% of total Co) as the aging and submerged-dried cycling studies. However, the Fe oxide fraction of the soil was unimportant in Co retention. A significant amount (24 to 87% of total Co) of the Co in root box treatments was identified as a Co precipitate. The importance of this finding is that in the presence of rice roots, the Co is redistributed to a Co precipitate. This work confirmed earlier macroscopic work that Mn oxides are important in the sequestration of Co in soils and the influence of roots needs to be taken into account when addressing Co speciation. The information gained from this study will be used to improve models to predict the lability and hence the availability of Co in terrestrial environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号