首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
废物处理   1篇
基础理论   2篇
  2021年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Journal of Material Cycles and Waste Management - Bottom ash is the main solid residue from municipal solid waste incineration (MSWI). The material can be utilised in the construction industry but...  相似文献   
2.
We study how the combination of tides and freshwater buoyancy affects the marine organisms accumulation and horizontal transport in the ROFI system of the eastern English Channel. The Princeton Ocean Model coupled with a particle-tracking module is used to study the migration of fish eggs and larvae under different forcing conditions. Results of modeling are validated against observed concentrations of Flounder (Pleuronectes flesus) larvae. Numerical Lagrangian tracking experiments are performed with passive and active particles, representing sea-water organisms. Passive particles are neutrally buoyant whereas active particles are able to exercise light dependent vertical migrations equating to the swimming behavior of larvae. The experiments reveal that the strongest accumulation of particles occurs along the French coast on the margin of the ROFI. This happens because the interaction between the turbulence, the freshwater buoyancy input, and tidal dynamics, produces particle trapping and vertical spreading within the frontal convergence zone. Tides and freshwater input induce net alongshore horizontal transport toward the North. Tidal currents modulate the magnitude of horizontal transport whereas the fresh water input controls more the location of accumulation zones. Tracking experiments with active particles indicate that the vertical migration leads to a significant departure from the passive particle transport pattern. Differences lie in the shape of the particle transport pattern and the rate of the northward migration. In particular, vertically migrating particles travel slower. To find possible Flounder migration pathways, particles are released within the assumed spawning area of Flounder. The model predicts larvae drift routes and demonstrates that throughout the entire particle-tracking period the horizontal structure of the particle distribution is consistent with the larvae concentrations observed during the field experiments.  相似文献   
3.
A 3-D hybrid flow/transport model is developed to predict the dispersal of oil pollution in coastal waters. The transport module of the model takes predetermined current and turbulent diffusivities and uses Lagrangian tracking to predict the motion of individual particles (droplets), the sum of which constitutes a hypothetical oil spill. Currents and turbulent diffusivities used in the model are generated by a numerical ocean circulation model (POM) implemented for the Caspian Sea. The basic processes affecting the fate of the oil spill are taken into account and parameterised in the transport model. The process of evaporation is modeled with the pseudo-component approach. The model is implemented for a simulated continuous release in the coastal waters of the south part of the Caspian Sea. Numerical experiments simulate 5- and 10-day blowout scenarios resulting from sources situated in areas were intensive and extensive development of oil deposits is expected soon. Oil slick movement and risk of coastline contamination by beaching of offshore oil spills are illustrated for different wind conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号