首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
废物处理   1篇
综合类   1篇
基础理论   6篇
污染及防治   9篇
  2021年   1篇
  2009年   1篇
  2008年   1篇
  2001年   1篇
  1997年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有17条查询结果,搜索用时 78 毫秒
1.
2.
3.
The gills of the yellowtail Seriola quinqueradiata, exposed to Chattonella marina a red tide species, were examined histologically and histochemically. The pavement cells of primary lamellae were swollen in the exposed specimens. This presumably indicates that C. marina contains undetermined toxic substances. The number of mucous cells containing mucous decreased in proportion to the duration of exposure. The loss of the mucous substance in the cells is probably due to the ichthyotoxic stimulus caused by C. marina. A decrease of carbonic anhydrase activity in the secondary lamellae was confirmed, when mucous substances were lost in most mucous cells. Since the carbonic anhydrase usually exists in the epithelia of the secondary lamellae, it was presumably resolved by C. marina. The decrease of the carbonic anhydrase activity may cause certain physiological disadvantages to the fish exposed to C. marina.  相似文献   
4.
Examinations of the electrocardiogram of Pagrus major exposed to Chattonella marina, a planktonic organism causing red tide, were made to determine the physiological effects on fish. The heart rate decreased as a result of the extention in the interval between T and P waves. The decrease in heart rate with the extended intervals between T and P waves was also recognized in the condition of decreased dissolved oxygen. Also, the decrease in heart rate of the fish exposed to the red tide occurred while the fish was struggling. This reduction seems to be caused by the strong tension of the vagal nerve. Upon exposure to C. marina at high cell concentration, the heart beat at a very low frequency after 30 min. The very low heart rate is expected to limit seriously the oxygen uptake by the gill, because the cardiac output is probably very low in this situation.  相似文献   
5.
Sulfur-containing metabolites of 2,5,2′,5′-tetrachlorobiphenyl (TCB), 4-methylthio-TCB (MT-TCB), 4-methylsulfoxyl TCB (MSX-TCB) and 4-methylsulfonyl TCB (MS-TCB) were examined for their acute toxicities, hepatic enzyme inducing activities, accumulation in the liver and lung, and excretion to the feces in rats. TCB and MT-TCB suppressed body weight and recovery of body weight gain was delayed in the MT-TCB-treated rats. MT-TCB and MS-TCB caused an increase in total liver lipid and only MT-TCB brought about an atrophy of the thymus. Treatment with MT-TCB increased cytochrome P-450 content and benzphetamine N-demethylase activity. The same enzymes were also induced by treatment with MSX-TCB. Although TCB administered was excreted mostly as hydroxylated TCB, a part was excreted as unchanged and a very small portion as the sulfur-containing metabolites. MT-TCB, MSX-TCB and MS-TCB were excreted from the MT-TCB- and MSX-TCB-treated rats. The MS-TCB-treated rats excreted only MS-TCB. The same compounds as found in the feces were identified in the liver and lung of the rats treated with those compounds except in the liver of TCB-treated rats. These results indicate that sulfur-containing metabolites, especially MT-TCB, were more important than their parent compound, TCB, from a toxicological point of view.  相似文献   
6.
7.
8.
A total of 4,172 freshwater eels have been collected by electrofishing in upper estuaries from Madagascar (East coast), Mascarene (Réunion and Mauritius Is.), Comoros (Mayotte Is.) and Seychelles (Mahé and Praslin Is.) Archipelagos, between October 2003 and February 2006. Eel species composition in the sampling stations was contrasted between eastern Madagascar (Anguilla mossambica 96.0%, A. marmorata 3.9% and A. bicolor bicolor 0.2%), the Comoros (A. marmorata 56.1% and A. bicolor bicolor 43.9%), the Mascarene (A. marmorata 91.4%, A. bicolor bicolor 5.4% and A. mossambica 3.2%) and the Seychelles Archipelagos (A. bicolor bicolor 100.0%). This gradient in species composition, even concerning the short time-range of our sampling, argued for separate migration routes between species. A total of 168 eels were aged by reading their otolith microstructure, and otolith growth rates were calculated from pre-leptocephalus stage (post-hatching) to metamorphosis, until freshwater check. For all species, mean otolith growth rate (OGR) was related to specific migration routes: A. bicolor bicolor is distributed in the lowest latitudes and showed the highest OGR during leptocephalus stage, whereas A. mossambica, endemic of the Malagasy area, has the most southern distribution and showed the lowest OGR. OGR during leptocephalus stage was negatively correlated to the leptocephalus stage duration, showing a decrease of global metabolism with time, classical in leptocephali. This relationship was found significant for A. marmorata and A. mossambica, probably because all these larvae crossed successively the same environments, but not for A. bicolor bicolor, probably because their larvae crossed different pelagic environments, opening the hypothesis of larvae from different origins.  相似文献   
9.
Growth trajectories of individual larvae of Japanese sardine, Sardinops melanostictus, caught in the coastal waters off western Japan were back-calculated from the first feeding stage up to date of capture (approximate size of 20 to 35 mm total length; TL) based on individually determined allometric relationships between otolith daily ring radii and fish total lengths. The larvae in January-, February-, and March-hatched cohorts in the coastal waters grew faster and more uniformly than those in the oceanic waters offshore of the Kuroshio current. Growth trajectories of the three hatch-month cohorts were similar and could be expressed by the Gompertz model. The inflection points of the growth curves were reached at 9 to 11 d after hatching, when larvae were 10.8 to 11.8 mm TL. Maximum growth rates at these points were 0.80 to 0.85 mm d−1. Growth rates gradually declined after the inflection points, and larval TLs converged into the infinite length of 29 to 32 mm, the sizes at which metamorphosis from larvae to juveniles is initiated. This asymptotic growth pattern in the larval stage resulted in the narrow ranges in TLs in spite of the wide range of ages of the larvae caught by boat seiners in the coastal waters. Slow growth and therefore long duration of the metamorphosing stage could be influential in determining the cumulative total mortality in the early life stages of the Japanese sardine. Received: 14 July 1996 / Accepted: 20 August 1996  相似文献   
10.
M. Endo  Y. Onoue  A. Kuroki 《Marine Biology》1992,112(3):371-376
This study was carried out in July 1989 and 1990 to confirm whether the neurotoxins of the red tide organism Chattonella marine contribute to the cardiac disorder and death of fish. Exposure of fish to C. marina red tide water significantly decreased the heart rate, presumably resulting in anoxia from reduced blood circulation in the gill. Since atropine restored the depressed heart rate, the cardiac disorder seemed to occur neurogenously in association with the intrinsic cardiophysiology of the fish. Neurotoxin fractions of C. marina and Gymnodinium sp. depolarized the vagal nerve of fish, and hence induced the reduction of heart rate. Depression of the heart rate in fish exposed to C. marina red tide water, thus, seemed to be caused by the neurotoxins of these organisms. Histological examination showed little branchial damage due to neurotoxin fractions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号